What Matters in LLM-generated Data: Diversity and Its Effect on Model Fine-Tuning
- URL: http://arxiv.org/abs/2506.19262v2
- Date: Wed, 25 Jun 2025 03:25:04 GMT
- Title: What Matters in LLM-generated Data: Diversity and Its Effect on Model Fine-Tuning
- Authors: Yuchang Zhu, Huazhen Zhong, Qunshu Lin, Haotong Wei, Xiaolong Sun, Zixuan Yu, Minghao Liu, Zibin Zheng, Liang Chen,
- Abstract summary: We show how varying levels of diversity in LLM-generated data affect downstream model performance.<n>We also investigate the performance of models trained on data that mixes different proportions of LLM-generated data.
- Score: 22.43647238560673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the remarkable generative capabilities of large language models (LLMs), using LLM-generated data to train downstream models has emerged as a promising approach to mitigate data scarcity in specific domains and reduce time-consuming annotations. However, recent studies have highlighted a critical issue: iterative training on self-generated data results in model collapse, where model performance degrades over time. Despite extensive research on the implications of LLM-generated data, these works often neglect the importance of data diversity, a key factor in data quality. In this work, we aim to understand the implications of the diversity of LLM-generated data on downstream model performance. Specifically, we explore how varying levels of diversity in LLM-generated data affect downstream model performance. Additionally, we investigate the performance of models trained on data that mixes different proportions of LLM-generated data, which we refer to as synthetic data. Our experimental results show that, with minimal distribution shift, moderately diverse LLM-generated data can enhance model performance in scenarios with insufficient labeled data, whereas highly diverse generated data has a negative impact. We hope our empirical findings will offer valuable guidance for future studies on LLMs as data generators.
Related papers
- Few-shot LLM Synthetic Data with Distribution Matching [37.55363714371521]
Large language models (LLMs) produce high-quality synthetic data to enhance the performance of smaller models.<n>LLMs-generated synthetic data often differs from the real data in key language attributes.<n>We introduce SynAlign: a synthetic data generation and filtering framework based on key attribute distribution matching.
arXiv Detail & Related papers (2025-02-09T16:43:32Z) - Understanding and Mitigating the Bias Inheritance in LLM-based Data Augmentation on Downstream Tasks [24.706895491806794]
This work presents the first systematic investigation in understanding, analyzing, and mitigating bias inheritance.<n>We analyze how 6 different types of biases manifest at varying bias ratios.<n>We propose three mitigation strategies: token-based, mask-based, and loss-based approaches.
arXiv Detail & Related papers (2025-02-06T15:20:58Z) - Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data [34.6322241916799]
Fine-tuning large language models (LLMs) using diverse datasets is crucial for enhancing their overall performance across various domains.<n>We propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data.
arXiv Detail & Related papers (2025-02-05T17:21:01Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.<n>In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning [61.99353167168545]
We show that fine-tuning with LLM-generated data improves target task performance and reduces non-target task degradation.<n>This is the first work to provide an empirical explanation based on token perplexity reduction to mitigate catastrophic forgetting in LLMs after fine-tuning.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - On the Diversity of Synthetic Data and its Impact on Training Large Language Models [34.00031258223175]
Large Language Models (LLMs) have accentuated the need for diverse, high-quality pre-training data.
Synthetic data emerges as a viable solution to the challenges of data scarcity and inaccessibility.
We study the downstream effects of synthetic data diversity during both the pre-training and fine-tuning stages.
arXiv Detail & Related papers (2024-10-19T22:14:07Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Synthetic Data Generation with Large Language Models for Text
Classification: Potential and Limitations [21.583825474908334]
We study how the performance of models trained on synthetic data may vary with the subjectivity of classification.
Our results indicate that subjectivity, at both the task level and instance level, is negatively associated with the performance of the model trained on synthetic data.
arXiv Detail & Related papers (2023-10-11T19:51:13Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.