Few-shot LLM Synthetic Data with Distribution Matching
- URL: http://arxiv.org/abs/2502.08661v2
- Date: Sat, 15 Feb 2025 03:49:29 GMT
- Title: Few-shot LLM Synthetic Data with Distribution Matching
- Authors: Jiyuan Ren, Zhaocheng Du, Zhihao Wen, Qinglin Jia, Sunhao Dai, Chuhan Wu, Zhenhua Dong,
- Abstract summary: Large language models (LLMs) produce high-quality synthetic data to enhance the performance of smaller models.
LLMs-generated synthetic data often differs from the real data in key language attributes.
We introduce SynAlign: a synthetic data generation and filtering framework based on key attribute distribution matching.
- Score: 37.55363714371521
- License:
- Abstract: As large language models (LLMs) advance, their ability to perform in-context learning and few-shot language generation has improved significantly. This has spurred using LLMs to produce high-quality synthetic data to enhance the performance of smaller models like online retrievers or weak LLMs. However, LLM-generated synthetic data often differs from the real data in key language attributes (e.g., styles, tones, content proportions, etc.). As a result, mixing these synthetic data directly with real data may distort the original data distribution, potentially hindering performance improvements. To solve this, we introduce SynAlign: a synthetic data generation and filtering framework based on key attribute distribution matching. Before generation, SynAlign employs an uncertainty tracker surrogated by the Gaussian Process model to iteratively select data clusters distinct from selected ones as demonstrations for new data synthesis, facilitating the efficient exploration diversity of the real data. Then, a latent attribute reasoning method is employed: the LLM summarizes linguistic attributes of demonstrations and then synthesizes new data based on them. This approach facilitates synthesizing diverse data with linguistic attributes that appear in real data.After generation, the Maximum Mean Discrepancy is used as the objective function to learn the sampling weight of each synthetic data, ensuring distribution matching with the real data. Our experiments on multiple text prediction tasks show significant performance improvements. We also conducted an online A/B test on an online retriever to demonstrate SynAlign's effectiveness.
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - On the Diversity of Synthetic Data and its Impact on Training Large Language Models [34.00031258223175]
Large Language Models (LLMs) have accentuated the need for diverse, high-quality pre-training data.
Synthetic data emerges as a viable solution to the challenges of data scarcity and inaccessibility.
We study the downstream effects of synthetic data diversity during both the pre-training and fine-tuning stages.
arXiv Detail & Related papers (2024-10-19T22:14:07Z) - Efficacy of Synthetic Data as a Benchmark [3.2968976262860408]
We investigate the effectiveness of generating synthetic data through large language models (LLMs)
Our experiments show that while synthetic data can effectively capture performance of various methods for simpler tasks, it falls short for more complex tasks like named entity recognition.
We propose a new metric called the bias factor, which evaluates the biases introduced when the same LLM is used to both generate benchmarking data and to perform the tasks.
arXiv Detail & Related papers (2024-09-18T13:20:23Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
Large language models (LLMs) have demonstrated remarkable in-context learning capabilities across diverse applications.
We introduce EPIC, a novel approach that leverages balanced, grouped data samples and consistent formatting with unique variable mapping to guide LLMs in generating accurate synthetic data across all classes, even for imbalanced datasets.
arXiv Detail & Related papers (2024-04-15T17:49:16Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms [5.366354612549173]
We focus on data-synthesis methods to create high-quality synthetic data.
We present a data-synthesis method by which the resulting synthetic data mimic the translation errors found in actual data.
Experimental results show that using the synthetic data created by our approach results in significantly better APE performance than other synthetic data created by existing methods.
arXiv Detail & Related papers (2022-04-08T07:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.