Quantum Counting in the Rydberg Blockade
- URL: http://arxiv.org/abs/2506.19298v1
- Date: Tue, 24 Jun 2025 04:09:55 GMT
- Title: Quantum Counting in the Rydberg Blockade
- Authors: Joseph Gibson, Victor Drouin-Touchette, Stefanos Kourtis,
- Abstract summary: We propose a quantum algorithm for counting the number of solutions to planar 2-satisfiability (2SAT) numerically on neutral atom quantum computers.<n>Our algorithm maps variables to atomic registers arranged in space according to a given formula, so that 2SAT constraints are enforced via the Rydberg blockade between neighboring atoms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum algorithm for approximately counting the number of solutions to planar 2-satisfiability (2SAT) formulas natively on neutral atom quantum computers. Our algorithm maps Boolean variables to atomic registers arranged in space according to a given formula, so that 2SAT constraints are enforced via the Rydberg blockade between neighboring atoms. A quench under Rydberg dynamics of an initial computational basis state produces a superposition of all solutions after a sufficiently long evolution. For almost uniform superpositions, a polynomial number of measurements is enough to estimate the solution count up to any constant multiplicative factor via sampling based counting. We demonstrate numerically that this protocol leads to almost uniform solution sampling in 1D and 2D grids and that it produces accurate counts for 2SAT instances on punctured grids, suggesting its general applicability as a heuristic for #P-complete problems.
Related papers
- Learning Feasible Quantum States for Quadratic Constrained Binary Optimization Problems [41.23247424467223]
We develop a variational approach that creates an equal superposition of quantum states that satisfy constraints in a QCBO.<n>The resulting equal superposition can be used as an initial state for quantum algorithms that solve QUBOs/QCBOs.
arXiv Detail & Related papers (2025-08-04T16:44:53Z) - On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
We decompose arbitrary exponentials into circuits of constant depth using $mathcalO(n)$ ancillae and two-body XX and ZZ interactions.
We prove the correctness of our approach, after introducing novel rewrite rules for circuits which benefit from qubit recycling.
arXiv Detail & Related papers (2024-08-15T17:09:08Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Polynomial-time Solver of Tridiagonal QUBO and QUDO problems with Tensor Networks [41.94295877935867]
We present an algorithm for solving tridiagonal Quadratic Unconstrained Binary Optimization (QUBO) problems and Quadratic Unconstrained Discrete Optimization (QUDO) problems with one-neighbor interactions.
Our method is based on the simulation of a quantum state to which we will apply an imaginary time evolution and perform a series of partial traces to obtain the state of maximum amplitude.
arXiv Detail & Related papers (2023-09-19T10:45:15Z) - A Parallel and Distributed Quantum SAT Solver Based on Entanglement and
Quantum Teleportation [1.5201992393140886]
We develop a parallel quantum SAT solver, which reduces the time complexity in each iteration from linear time O(m) to constant time O(1) by utilising extra entangled qubits.
We have proved the correctness of our approaches and demonstrated them in simulations.
arXiv Detail & Related papers (2023-08-07T06:52:06Z) - A hybrid Quantum proposal to deal with 3-SAT problem [75.38606213726906]
This paper presents and describes a hybrid quantum computing strategy for solving 3-SAT problems.
The performance of this approximation has been tested over a set of representative scenarios when dealing with 3-SAT from the quantum computing perspective.
arXiv Detail & Related papers (2023-06-07T12:19:22Z) - Quantum Search Approaches to Sampling-Based Motion Planning [0.0]
We present a novel formulation of traditional sampling-based motion planners as database-oracle structures that can be solved via quantum search algorithms.
We consider two complementary scenarios: for simpler sparse environments, we formulate the Quantum Full Path Search Algorithm (q-FPS), which creates a superposition of full random path solutions.
For dense unstructured environments, we formulate the Quantum Rapidly Exploring Random Tree algorithm, q-RRT, that creates quantum superpositions of possible parent-child connections.
arXiv Detail & Related papers (2023-04-10T19:12:25Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Quantum Sparse Coding [5.130440339897477]
We develop a quantum-inspired algorithm for sparse coding.
The emergence of quantum computers and Ising machines can potentially lead to more accurate estimations.
We conduct numerical experiments with simulated data on Lightr's quantum-inspired digital platform.
arXiv Detail & Related papers (2022-09-08T13:00:30Z) - Quantum Optimization of Maximum Independent Set using Rydberg Atom
Arrays [39.76254807200083]
We experimentally investigate quantum algorithms for solving the Maximum Independent Set problem.
We find the problem hardness is controlled by the solution degeneracy and number of local minima.
On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - Computing the quantum guesswork: a quadratic assignment problem [6.445605125467573]
Previous approaches to the computation of the guesswork were based on standard semi-definite programming techniques.
We show that computing the quantum guesswork of qubit ensembles with uniform probability distribution leads to a more-than-quadratic speedup.
As examples, we compute the guesswork of regular and quasi-regular sets of qubit states.
arXiv Detail & Related papers (2021-12-03T01:24:57Z) - Polynomial T-depth Quantum Solvability of Noisy Binary Linear Problem:
From Quantum-Sample Preparation to Main Computation [0.0]
We present a complete analysis of the quantum solvability of the noisy binary linear problem (NBLP)
We show that the cost of solving the NBLP can be in the problem size, at the expense of an exponentially increasing logical qubits.
arXiv Detail & Related papers (2021-09-23T07:46:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.