Quantum Search Approaches to Sampling-Based Motion Planning
- URL: http://arxiv.org/abs/2304.06479v4
- Date: Mon, 23 Oct 2023 18:55:38 GMT
- Title: Quantum Search Approaches to Sampling-Based Motion Planning
- Authors: Paul Lathrop, Beth Boardman, Sonia Mart\'inez
- Abstract summary: We present a novel formulation of traditional sampling-based motion planners as database-oracle structures that can be solved via quantum search algorithms.
We consider two complementary scenarios: for simpler sparse environments, we formulate the Quantum Full Path Search Algorithm (q-FPS), which creates a superposition of full random path solutions.
For dense unstructured environments, we formulate the Quantum Rapidly Exploring Random Tree algorithm, q-RRT, that creates quantum superpositions of possible parent-child connections.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel formulation of traditional sampling-based
motion planners as database-oracle structures that can be solved via quantum
search algorithms. We consider two complementary scenarios: for simpler sparse
environments, we formulate the Quantum Full Path Search Algorithm (q-FPS),
which creates a superposition of full random path solutions, manipulates
probability amplitudes with Quantum Amplitude Amplification (QAA), and quantum
measures a single obstacle free full path solution. For dense unstructured
environments, we formulate the Quantum Rapidly Exploring Random Tree algorithm,
q-RRT, that creates quantum superpositions of possible parent-child
connections, manipulates probability amplitudes with QAA, and quantum measures
a single reachable state, which is added to a tree. As performance depends on
the number of oracle calls and the probability of measuring good quantum
states, we quantify how these errors factor into the probabilistic completeness
properties of the algorithm. We then numerically estimate the expected number
of database solutions to provide an approximation of the optimal number of
oracle calls in the algorithm. We compare the q-RRT algorithm with a classical
implementation and verify quadratic run-time speedup in the largest connected
component of a 2D dense random lattice. We conclude by evaluating a proposed
approach to limit the expected number of database solutions and thus limit the
optimal number of oracle calls to a given number.
Related papers
- An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture [1.072460284847973]
We show that Variational Quantum Algorithms can be a viable alternative to classical algorithms in the near future.
In particular, we compare the performances, in terms of success probability, of two algorithms, i.e., Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
The simulation experiments, performed for a set of simple problems, %CM230124 that involve a Cloud and two Edge nodes, show that the VQE algorithm ensures better performances when it is equipped with appropriate circuit textitansatzes that are able to restrict the search space
arXiv Detail & Related papers (2024-01-25T17:37:40Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Quantum-Based Feature Selection for Multi-classification Problem in
Complex Systems with Edge Computing [15.894122816099133]
A quantum-based feature selection algorithm for the multi-classification problem, namely, QReliefF, is proposed.
Our algorithm is superior in finding the nearest neighbor, reducing the complexity from O(M) to O(sqrt(M)).
arXiv Detail & Related papers (2023-10-01T03:57:13Z) - Optimization of probabilistic quantum search algorithm with a priori
information [0.21756081703276003]
Grover's quantum search algorithm is a typical quantum algorithm that proves the superiority of quantum computing over classical computing.
We consider a probabilistic Grover search algorithm allowing nonzero probability of failure for a database with a general a priori probability distribution of the elements.
arXiv Detail & Related papers (2023-04-06T04:33:37Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.