TTSDS2: Resources and Benchmark for Evaluating Human-Quality Text to Speech Systems
- URL: http://arxiv.org/abs/2506.19441v1
- Date: Tue, 24 Jun 2025 09:12:02 GMT
- Title: TTSDS2: Resources and Benchmark for Evaluating Human-Quality Text to Speech Systems
- Authors: Christoph Minixhofer, Ondrej Klejch, Peter Bell,
- Abstract summary: We introduce Text to Speech Distribution Score 2 (TTSDS2), a more robust and improved version of TTSDS.<n>TTSDS2 is the only one out of 16 compared metrics to correlate with a Spearman correlation above 0.50 for every domain and subjective score evaluated.<n>We also release a range of resources for evaluating synthetic speech close to real speech: A dataset with over 11,000 subjective opinion score ratings; a pipeline for continually recreating a multilingual test dataset to avoid data leakage.
- Score: 13.307889110301502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluation of Text to Speech (TTS) systems is challenging and resource-intensive. Subjective metrics such as Mean Opinion Score (MOS) are not easily comparable between works. Objective metrics are frequently used, but rarely validated against subjective ones. Both kinds of metrics are challenged by recent TTS systems capable of producing synthetic speech indistinguishable from real speech. In this work, we introduce Text to Speech Distribution Score 2 (TTSDS2), a more robust and improved version of TTSDS. Across a range of domains and languages, it is the only one out of 16 compared metrics to correlate with a Spearman correlation above 0.50 for every domain and subjective score evaluated. We also release a range of resources for evaluating synthetic speech close to real speech: A dataset with over 11,000 subjective opinion score ratings; a pipeline for continually recreating a multilingual test dataset to avoid data leakage; and a continually updated benchmark for TTS in 14 languages.
Related papers
- Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments [8.103855990028842]
We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS.
We found increasing TTS phrase diversity and utterance sampling monotonically improves model performance.
Our experiments are based on English and single word utterances but the findings generalize to i18n languages.
arXiv Detail & Related papers (2024-07-23T21:05:44Z) - TTSDS -- Text-to-Speech Distribution Score [9.380879437204277]
Many recently published Text-to-Speech (TTS) systems produce audio close to real speech.<n>We propose evaluating the quality of synthetic speech as a combination of multiple factors such as prosody, speaker identity, and intelligibility.<n>We benchmark 35 TTS systems developed between 2008 and 2024 and show that our score computed as an unweighted average of factors strongly correlates with the human evaluations.
arXiv Detail & Related papers (2024-07-17T16:30:27Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
We investigate text generation and injection for improving the performance of an industry commonly-used streaming model, Transformer-Transducer (T-T)
We first propose a strategy to generate code-switching text data and then investigate injecting generated text into T-T model explicitly by Text-To-Speech (TTS) conversion or implicitly by tying speech and text latent spaces.
Experimental results on the T-T model trained with a dataset containing 1,800 hours of real Mandarin-English code-switched speech show that our approaches to inject generated code-switching text significantly boost the performance of T-T models.
arXiv Detail & Related papers (2023-03-20T09:13:27Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
We train TTS systems using real-world speech from YouTube and podcasts.
Recent Text-to-Speech architecture is designed for multiple code generation and monotonic alignment.
We show thatRecent Text-to-Speech architecture outperforms existing TTS systems in several objective and subjective measures.
arXiv Detail & Related papers (2023-02-08T17:34:32Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
This paper proposes a method for zero-shot multilingual TTS using text-only data for the target language.
The use of text-only data allows the development of TTS systems for low-resource languages.
Evaluation results demonstrate highly intelligible zero-shot TTS with a character error rate of less than 12% for an unseen language.
arXiv Detail & Related papers (2023-01-30T00:53:50Z) - SESCORE2: Learning Text Generation Evaluation via Synthesizing Realistic
Mistakes [93.19166902594168]
We propose SESCORE2, a self-supervised approach for training a model-based metric for text generation evaluation.
Key concept is to synthesize realistic model mistakes by perturbing sentences retrieved from a corpus.
We evaluate SESCORE2 and previous methods on four text generation tasks across three languages.
arXiv Detail & Related papers (2022-12-19T09:02:16Z) - BLASER: A Text-Free Speech-to-Speech Translation Evaluation Metric [66.73705349465207]
End-to-end speech-to-speech translation (S2ST) is generally evaluated with text-based metrics.
We propose a text-free evaluation metric for end-to-end S2ST, named BLASER, to avoid the dependency on ASR systems.
arXiv Detail & Related papers (2022-12-16T14:00:26Z) - Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised
Learning for Text-To-Speech [37.942466944970704]
This paper proposes Virtuoso, a massively multilingual speech-text joint semi-supervised learning framework for text-to-speech synthesis (TTS) models.
To train a TTS model from various types of speech and text data, different training schemes are designed to handle supervised (TTS and ASR data) and unsupervised (untranscribed speech and unspoken text) datasets.
Experimental evaluation shows that multilingual TTS models trained on Virtuoso can achieve significantly better naturalness and intelligibility than baseline ones in seen languages.
arXiv Detail & Related papers (2022-10-27T14:09:48Z) - The Conversational Short-phrase Speaker Diarization (CSSD) Task:
Dataset, Evaluation Metric and Baselines [63.86406909879314]
This paper describes the Conversational Short-phrases Speaker Diarization (CSSD) task.
It consists of training and testing datasets, evaluation metric and baselines.
In the metric aspect, we design the new conversational DER (CDER) evaluation metric, which calculates the SD accuracy at the utterance level.
arXiv Detail & Related papers (2022-08-17T03:26:23Z) - NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level
Quality [123.97136358092585]
We develop a TTS system called NaturalSpeech that achieves human-level quality on a benchmark dataset.
Specifically, we leverage a variational autoencoder (VAE) for end-to-end text to waveform generation.
Experiment evaluations on popular LJSpeech dataset show that our proposed NaturalSpeech achieves -0.01 CMOS to human recordings at the sentence level.
arXiv Detail & Related papers (2022-05-09T16:57:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.