Dialogic Pedagogy for Large Language Models: Aligning Conversational AI with Proven Theories of Learning
- URL: http://arxiv.org/abs/2506.19484v1
- Date: Tue, 24 Jun 2025 10:19:09 GMT
- Title: Dialogic Pedagogy for Large Language Models: Aligning Conversational AI with Proven Theories of Learning
- Authors: Russell Beale,
- Abstract summary: Large Language Models (LLMs) are transforming education by enabling rich conversational learning experiences.<n>This article provides a review of how LLM-based conversational agents are being used in higher education.
- Score: 1.2691047660244332
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are rapidly transforming education by enabling rich conversational learning experiences. This article provides a comprehensive review of how LLM-based conversational agents are being used in higher education, with extensions to secondary and lifelong learning contexts. We synthesize existing literature on LLMs in education and theories of conversational and dialogic pedagogy - including Vygotsky's sociocultural learning (scaffolding and the Zone of Proximal Development), the Socratic method, and Laurillard's conversational framework - and examine how prompting strategies and retrieval-augmented generation (RAG) can align LLM behaviors with these pedagogical theories, and how it can support personalized, adaptive learning. We map educational theories to LLM capabilities, highlighting where LLM-driven dialogue supports established learning principles and where it challenges or falls short of traditional pedagogical assumptions. Notable gaps in applying prior theories to LLMs are identified, such as the models tendency to provide direct answers instead of fostering co-construction of knowledge, and the need to account for the constant availability and broad but non-human expertise of LLM tutors. In response, we propose practical strategies to better align LLM interactions with sound pedagogy - for example, designing prompts that encourage Socratic questioning, scaffolded guidance, and student reflection, as well as integrating retrieval mechanisms to ensure accuracy and contextual relevance. Our aim is to bridge the gap between educational theory and the emerging practice of AI-driven conversational learning, offering insights and tools for making LLM-based dialogues more educationally productive and theory-aligned.
Related papers
- A Theory of Adaptive Scaffolding for LLM-Based Pedagogical Agents [3.6084561124905297]
Large language models (LLMs) present new opportunities for creating pedagogical agents that engage in meaningful dialogue to support student learning.<n>We propose a framework that combines Evidence-Centered Design with Social Cognitive Theory for adaptive scaffolding in LLM-based agents focused on STEM+C learning.<n>Our findings show that Inquizzitor delivers high-quality assessment and interaction aligned with core learning theories, offering teachers effective guidance that students value.
arXiv Detail & Related papers (2025-08-02T21:58:32Z) - From Problem-Solving to Teaching Problem-Solving: Aligning LLMs with Pedagogy using Reinforcement Learning [76.09281171131941]
Large language models (LLMs) can transform education, but their optimization for direct question-answering often undermines effective pedagogy.<n>We propose an online reinforcement learning (RL)-based alignment framework that can quickly adapt LLMs into effective tutors.
arXiv Detail & Related papers (2025-05-21T15:00:07Z) - Not Minds, but Signs: Reframing LLMs through Semiotics [0.0]
This paper argues for a semiotic perspective on Large Language Models (LLMs)<n>Rather than assuming that LLMs understand language or simulate human thought, we propose that their primary function is to recombine, recontextualize, and circulate linguistic forms.<n>We explore applications in literature, philosophy, education, and cultural production.
arXiv Detail & Related papers (2025-05-20T08:49:18Z) - Enhanced Bloom's Educational Taxonomy for Fostering Information Literacy in the Era of Large Language Models [16.31527042425208]
This paper proposes an LLM-driven Bloom's Educational Taxonomy that aims to recognize and evaluate students' information literacy (IL) with Large Language Models (LLMs)<n>The framework delineates the IL corresponding to the cognitive abilities required to use LLM into two distinct stages: Exploration & Action and Creation & Metacognition.
arXiv Detail & Related papers (2025-03-25T08:23:49Z) - Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
We argue that large language models (LLMs) have the potential to serve as effective tutors in foreign language education (FLE)<n> Specifically, LLMs can play three critical roles: (1) as data enhancers, improving the creation of learning materials or serving as student simulations; (2) as task predictors, serving as learner assessment or optimizing learning pathway; and (3) as agents, enabling personalized and inclusive education.
arXiv Detail & Related papers (2025-02-08T06:48:49Z) - Exploring Knowledge Tracing in Tutor-Student Dialogues using LLMs [49.18567856499736]
We investigate whether large language models (LLMs) can be supportive of open-ended dialogue tutoring.<n>We apply a range of knowledge tracing (KT) methods on the resulting labeled data to track student knowledge levels over an entire dialogue.<n>We conduct experiments on two tutoring dialogue datasets, and show that a novel yet simple LLM-based method, LLMKT, significantly outperforms existing KT methods in predicting student response correctness in dialogues.
arXiv Detail & Related papers (2024-09-24T22:31:39Z) - The Life Cycle of Large Language Models: A Review of Biases in Education [3.8757867335422485]
Large Language Models (LLMs) are increasingly adopted in educational contexts to provide personalized support to students and teachers.
The integration of LLMs in education technology has renewed concerns over algorithmic bias which may exacerbate educational inequities.
This review aims to clarify the complex nature of bias in LLM applications and provide practical guidance for their evaluation to promote educational equity.
arXiv Detail & Related papers (2024-06-03T18:00:28Z) - History, Development, and Principles of Large Language Models-An Introductory Survey [15.875687167037206]
Language models serve as a cornerstone in natural language processing (NLP)
Over extensive research spanning decades, language modeling has progressed from initial statistical language models (SLMs) to the contemporary landscape of large language models (LLMs)
arXiv Detail & Related papers (2024-02-10T01:18:15Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks.
However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome.
In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue.
arXiv Detail & Related papers (2023-11-09T18:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.