Scalable entangling gates on ion qubits via structured light addressing
- URL: http://arxiv.org/abs/2506.19535v1
- Date: Tue, 24 Jun 2025 11:45:28 GMT
- Title: Scalable entangling gates on ion qubits via structured light addressing
- Authors: Xueying Mai, Liyun Zhang, Qinyang Yu, Junhua Zhang, Yao Lu,
- Abstract summary: A central challenge in developing practical quantum processors is maintaining low control complexity while scaling to large numbers of qubits.<n>We develop a novel trapped-ion processor with an individual-addressing system that generates steerable Hermite-Gaussian beam arrays.<n>We demonstrate addressable two-qubit entangling gates in chains up to six ions with fidelities consistently around 0.97, achieved without complex pulse shaping.
- Score: 3.6205489137572204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central challenge in developing practical quantum processors is maintaining low control complexity while scaling to large numbers of qubits. Trapped-ion systems excel in small-scale operations and support rapid qubit scaling via long-chain architectures. However, their performance in larger systems is hindered by spectral crowding in radial motional modes, a problem that forces reliance on intricate pulse-shaping techniques to maintain gate fidelities. Here, we overcome this challenge by developing a novel trapped-ion processor with an individual-addressing system that generates steerable Hermite-Gaussian beam arrays. The transverse gradient of these beams couples qubits selectively to sparse axial motional modes, enabling to isolate a single mode as entanglement mediator. Leveraging this capability, we demonstrate addressable two-qubit entangling gates in chains up to six ions with fidelities consistently around 0.97, achieved without complex pulse shaping. Our method significantly reduces control overhead while preserving scalability, providing a crucial advance toward practical large-scale trapped-ion quantum computing.
Related papers
- Crosstalk-Robust Quantum Control in Multimode Bosonic Systems [34.03303487556571]
High-coherence superconducting cavities offer a hardware-efficient platform for quantum information processing.
To achieve universal operations of bosonic modes, the requisite nonlinearity is realized by coupling them to a transmon ancilla.
We employ quantum optimal control to engineer ancilla pulses that are robust to the frequency shifts.
arXiv Detail & Related papers (2024-03-01T04:33:12Z) - Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials [0.0]
In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register.
Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals.
We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells.
arXiv Detail & Related papers (2023-11-02T12:06:49Z) - Individual-atom control in array through phase modulation [9.783030573753894]
We introduce a method to engineer single qubit gates through phase-modulated continuous driving.
Distinct qubits can be individually addressed to high accuracy by simply tuning the modulation parameters.
Our results pave the way to scaling up atom-array platforms with low-error parallel-gate operations.
arXiv Detail & Related papers (2023-10-30T17:04:53Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - Pairwise-parallel entangling gates on orthogonal modes in a trapped-ion
chain [0.0]
parallel operations are important for both near-term quantum computers and larger-scale fault-tolerant machines.
We propose and implement a pairwise-parallel gate scheme on a trapped-ion quantum computer.
We demonstrate the utility of this scheme by creating a GHZ state in one step using parallel gates with one overlapping qubit.
arXiv Detail & Related papers (2023-02-17T21:12:14Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Coherent effects contribution to a fast gate fidelity in ion quantum
computer [47.187609203210705]
We develop a numerical model for full simulation of coherence effects using a linear ion microtrap array and a 2D microtrap array.
We have also studied the dependency of the gate fidelity on the laser power fluctuations.
arXiv Detail & Related papers (2021-12-12T12:53:00Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Scalable and Parallel Tweezer Gates for Quantum Computing with Long Ion
Strings [1.554996360671779]
We devise methods to implement scalable and parallel entangling gates by using engineered localized phonon modes.
We show that combining our methods with optimal coherent control techniques allows to realize maximally dense universal parallelized quantum circuits.
arXiv Detail & Related papers (2020-08-26T06:01:46Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.