MambaOutRS: A Hybrid CNN-Fourier Architecture for Remote Sensing Image Classification
- URL: http://arxiv.org/abs/2506.19561v1
- Date: Tue, 24 Jun 2025 12:20:11 GMT
- Title: MambaOutRS: A Hybrid CNN-Fourier Architecture for Remote Sensing Image Classification
- Authors: Minjong Cheon, Changbae Mun,
- Abstract summary: We introduce MambaOutRS, a novel hybrid convolutional architecture for remote sensing image classification.<n>MambaOutRS builds upon stacked Gated CNN blocks for local feature extraction and introduces a novel Fourier Filter Gate (FFG) module.
- Score: 4.14360329494344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep learning for vision tasks have seen the rise of State Space Models (SSMs) like Mamba, celebrated for their linear scalability. However, their adaptation to 2D visual data often necessitates complex modifications that may diminish efficiency. In this paper, we introduce MambaOutRS, a novel hybrid convolutional architecture for remote sensing image classification that re-evaluates the necessity of recurrent SSMs. MambaOutRS builds upon stacked Gated CNN blocks for local feature extraction and introduces a novel Fourier Filter Gate (FFG) module that operates in the frequency domain to capture global contextual information efficiently. Our architecture employs a four-stage hierarchical design and was extensively evaluated on challenging remote sensing datasets: UC Merced, AID, NWPU-RESISC45, and EuroSAT. MambaOutRS consistently achieved state-of-the-art (SOTA) performance across these benchmarks. Notably, our MambaOutRS-t variant (24.0M parameters) attained the highest F1-scores of 98.41\% on UC Merced and 95.99\% on AID, significantly outperforming existing baselines, including larger transformer models and Mamba-based architectures, despite using considerably fewer parameters. An ablation study conclusively demonstrates the critical role of the Fourier Filter Gate in enhancing the model's ability to capture global spatial patterns, leading to robust and accurate classification. These results strongly suggest that the complexities of recurrent SSMs can be effectively superseded by a judicious combination of gated convolutions for spatial mixing and frequency-based gates for spectral global context. Thus, MambaOutRS provides a compelling and efficient paradigm for developing high-performance deep learning models in remote sensing and other vision domains, particularly where computational efficiency is paramount.
Related papers
- RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement [59.364418120895]
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications.<n>We develop a novel relation-driven Mamba framework for effective UIE (RD-UIE)<n>Experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba.
arXiv Detail & Related papers (2025-05-02T12:21:44Z) - An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas.<n>We propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion.
arXiv Detail & Related papers (2025-04-15T08:19:12Z) - RoMA: Scaling up Mamba-based Foundation Models for Remote Sensing [28.488986896516284]
RoMA is a framework that enables scalable self-supervised pretraining of RS foundation models using large-scale, diverse, unlabeled data.<n>RoMA enhances scalability for high-resolution images through a tailored auto-regressive learning strategy.<n> experiments across scene classification, object detection, and semantic segmentation tasks demonstrate that RoMA-pretrained Mamba models consistently outperform ViT-based counterparts in both accuracy and computational efficiency.
arXiv Detail & Related papers (2025-03-13T14:09:18Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.<n>We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.<n>Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - IRSRMamba: Infrared Image Super-Resolution via Mamba-based Wavelet Transform Feature Modulation Model [7.842507196763463]
IRSRMamba is a novel framework integrating wavelet transform feature modulation for multi-scale adaptation.<n>IRSRMamba outperforms state-of-the-art methods in PSNR, SSIM, and perceptual quality.<n>This work establishes Mamba-based architectures as a promising direction for high-fidelity IR image enhancement.
arXiv Detail & Related papers (2024-05-16T07:49:24Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs [1.7648680700685022]
Underwater Image Enhancement (UIE) techniques aim to address the problem of underwater image degradation due to light absorption and scattering.
Recent years, both Convolution Neural Network (CNN)-based and Transformer-based methods have been widely explored.
MambaUIE is able to efficiently synthesize global and local information and maintains a very small number of parameters with high accuracy.
arXiv Detail & Related papers (2024-04-22T05:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.