FAF: A Feature-Adaptive Framework for Few-Shot Time Series Forecasting
- URL: http://arxiv.org/abs/2506.19567v1
- Date: Tue, 24 Jun 2025 12:28:38 GMT
- Title: FAF: A Feature-Adaptive Framework for Few-Shot Time Series Forecasting
- Authors: Pengpeng Ouyang, Dong Chen, Tong Yang, Shuo Feng, Zhao Jin, Mingliang Xu,
- Abstract summary: We propose the Feature-Adaptive Time Series Forecasting Framework (FAF)<n>FAF consists of three key components: the Generalized Knowledge Module (GKM), the Task-Specific Module (TSM), and the Rank Module (RM)<n>We evaluate FAF on five diverse real-world under few-shot time series forecasting settings.
- Score: 33.21739905339563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task and few-shot time series forecasting tasks are commonly encountered in scenarios such as the launch of new products in different cities. However, traditional time series forecasting methods suffer from insufficient historical data, which stems from a disregard for the generalized and specific features among different tasks. For the aforementioned challenges, we propose the Feature-Adaptive Time Series Forecasting Framework (FAF), which consists of three key components: the Generalized Knowledge Module (GKM), the Task-Specific Module (TSM), and the Rank Module (RM). During training phase, the GKM is updated through a meta-learning mechanism that enables the model to extract generalized features across related tasks. Meanwhile, the TSM is trained to capture diverse local dynamics through multiple functional regions, each of which learns specific features from individual tasks. During testing phase, the RM dynamically selects the most relevant functional region from the TSM based on input sequence features, which is then combined with the generalized knowledge learned by the GKM to generate accurate forecasts. This design enables FAF to achieve robust and personalized forecasting even with sparse historical observations We evaluate FAF on five diverse real-world datasets under few-shot time series forecasting settings. Experimental results demonstrate that FAF consistently outperforms baselines that include three categories of time series forecasting methods. In particular, FAF achieves a 41.81\% improvement over the best baseline, iTransformer, on the CO$_2$ emissions dataset.
Related papers
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - TimesBERT: A BERT-Style Foundation Model for Time Series Understanding [72.64824086839631]
GPT-style models have been positioned as foundation models for time series forecasting.<n>BERT-style architecture has not been fully unlocked for time series understanding.<n>We design TimesBERT to learn generic representations of time series.<n>Our model is pre-trained on 260 billion time points across diverse domains.
arXiv Detail & Related papers (2025-02-28T17:14:44Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.<n>A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.<n>An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - Battling the Non-stationarity in Time Series Forecasting via Test-time Adaptation [39.7344214193566]
We introduce a pioneering test-time adaptation framework tailored for time series forecasting (TSF)<n>TAFAS, the proposed approach to TSF-TTA, flexibly adapts source forecasters to continuously shifting test distributions while preserving the core semantic information learned during pre-training.<n>The novel utilization of partially-observed ground truth and gated calibration module enables proactive, robust, and model-agnostic adaptation of source forecasters.
arXiv Detail & Related papers (2025-01-09T04:59:15Z) - Specialized Foundation Models Struggle to Beat Supervised Baselines [60.23386520331143]
We look at three modalities -- genomics, satellite imaging, and time series -- with multiple recent FMs and compare them to a standard supervised learning workflow.<n>We find that it is consistently possible to train simple supervised models that match or even outperform the latest foundation models.
arXiv Detail & Related papers (2024-11-05T04:10:59Z) - FlexTSF: A Universal Forecasting Model for Time Series with Variable Regularities [17.164913785452367]
We propose FlexTSF, a universal time series forecasting model that possesses better generalization and supports both regular and irregular time series.
Experiments on 12 datasets show that FlexTSF outperforms state-of-the-art forecasting models respectively designed for regular and irregular time series.
arXiv Detail & Related papers (2024-10-30T16:14:09Z) - TSFM-Bench: A Comprehensive and Unified Benchmark of Foundation Models for Time Series Forecasting [35.505530132151]
Time Series Forecasting (TSF) is key functionality in numerous fields, such as financial investment, weather services, and energy management.<n>Many TSF methods require domain-specific data collection and model training and do not generalize well when applied in other domains.<n>Time Series Foundation Models (TSFMs) that are pre-trained on massive heterogeneous time series data aim to overcome these limitations.
arXiv Detail & Related papers (2024-10-15T17:23:49Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
This paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts.
Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios.
arXiv Detail & Related papers (2024-10-14T13:01:11Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
We propose a neural model that takes randomly sampled histories and outputs an adjustable basis composition as a continuous function of time.
It involves three key components: (1) a flexible approach for using randomly sampled histories from a long-tail distribution; (2) a transformer backbone that is trained on these actively sampled histories to produce, as representational output; and (3) the basis coefficients of a continuous function of time.
arXiv Detail & Related papers (2024-07-25T08:48:07Z) - Foundation Models for Time Series Analysis: A Tutorial and Survey [70.43311272903334]
Foundation Models (FMs) have fundamentally reshaped the paradigm of model design for time series analysis.
This survey aims to furnish a comprehensive and up-to-date overview of FMs for time series analysis.
arXiv Detail & Related papers (2024-03-21T10:08:37Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - HiMTM: Hierarchical Multi-Scale Masked Time Series Modeling with Self-Distillation for Long-Term Forecasting [17.70984737213973]
HiMTM is a hierarchical multi-scale masked time series modeling with self-distillation for long-term forecasting.
HiMTM integrates four key components: (1) hierarchical multi-scale transformer (HMT) to capture temporal information at different scales; (2) decoupled encoder-decoder (DED) that directs the encoder towards feature extraction while the decoder focuses on pretext tasks.
Experiments on seven mainstream datasets show that HiMTM surpasses state-of-the-art self-supervised and end-to-end learning methods by a considerable margin of 3.16-68.54%.
arXiv Detail & Related papers (2024-01-10T09:00:03Z) - Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System [46.39662315849883]
We introduce CLMFormer, a novel framework that mitigates redundancy through curriculum learning and a memory-driven decoder.<n>CLMFormer consistently improves Transformer-based models by up to 30%, demonstrating its effectiveness in long-horizon forecasting.
arXiv Detail & Related papers (2022-07-16T04:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.