Towards an Introspective Dynamic Model of Globally Distributed Computing Infrastructures
- URL: http://arxiv.org/abs/2506.19578v1
- Date: Tue, 24 Jun 2025 12:42:36 GMT
- Title: Towards an Introspective Dynamic Model of Globally Distributed Computing Infrastructures
- Authors: Ozgur O. Kilic, David K. Park, Yihui Ren, Tatiana Korchuganova, Sairam Sri Vatsavai, Joseph Boudreau, Tasnuva Chowdhury, Shengyu Feng, Raees Khan, Jaehyung Kim, Scott Klasky, Tadashi Maeno, Paul Nilsson, Verena Ingrid Martinez Outschoorn, Norbert Podhorszki, Frédéric Suter, Wei Yang, Yiming Yang, Shinjae Yoo, Alexei Klimentov, Adolfy Hoisie,
- Abstract summary: Large-scale scientific collaborations generate petabytes of data, with volumes soon expected to reach exabytes.<n>To manage these computational and storage demands, centralized workflow and data management systems are implemented.<n>A significant obstacle in adopting more effective or AI-driven solutions is the absence of a quick and reliable introspective dynamic model.
- Score: 27.473508984130728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale scientific collaborations like ATLAS, Belle II, CMS, DUNE, and others involve hundreds of research institutes and thousands of researchers spread across the globe. These experiments generate petabytes of data, with volumes soon expected to reach exabytes. Consequently, there is a growing need for computation, including structured data processing from raw data to consumer-ready derived data, extensive Monte Carlo simulation campaigns, and a wide range of end-user analysis. To manage these computational and storage demands, centralized workflow and data management systems are implemented. However, decisions regarding data placement and payload allocation are often made disjointly and via heuristic means. A significant obstacle in adopting more effective heuristic or AI-driven solutions is the absence of a quick and reliable introspective dynamic model to evaluate and refine alternative approaches. In this study, we aim to develop such an interactive system using real-world data. By examining job execution records from the PanDA workflow management system, we have pinpointed key performance indicators such as queuing time, error rate, and the extent of remote data access. The dataset includes five months of activity. Additionally, we are creating a generative AI model to simulate time series of payloads, which incorporate visible features like category, event count, and submitting group, as well as hidden features like the total computational load-derived from existing PanDA records and computing site capabilities. These hidden features, which are not visible to job allocators, whether heuristic or AI-driven, influence factors such as queuing times and data movement.
Related papers
- Scaling DRL for Decision Making: A Survey on Data, Network, and Training Budget Strategies [66.83950068218033]
Scaling Laws demonstrate that scaling model parameters and training data enhances learning performance.<n>Despite its potential to improve performance, the integration of scaling laws into deep reinforcement learning has not been fully realized.<n>This review addresses this gap by systematically analyzing scaling strategies in three dimensions: data, network, and training budget.
arXiv Detail & Related papers (2025-08-05T08:03:12Z) - Data Scaling Laws for End-to-End Autonomous Driving [83.85463296830743]
We evaluate the performance of a simple end-to-end driving architecture on internal driving datasets ranging in size from 16 to 8192 hours.<n>Specifically, we investigate how much additional training data is needed to achieve a target performance gain.
arXiv Detail & Related papers (2025-04-06T03:23:48Z) - DatawiseAgent: A Notebook-Centric LLM Agent Framework for Automated Data Science [4.1431677219677185]
DatawiseAgent is a notebook-centric agent framework that unifies interactions among user, agent and the computational environment.<n>It orchestrates four stages, including DSF-like planning, incremental execution, self-ging, and post-filtering.<n>It consistently outperforms or matches state-of-the-art methods across multiple model settings.
arXiv Detail & Related papers (2025-03-10T08:32:33Z) - Explaining Categorical Feature Interactions Using Graph Covariance and LLMs [18.44675735926458]
This paper focuses on the global synthetic dataset from the Counter Trafficking Data Collaborative.<n>It contains over 200,000 anonymized records spanning from 2002 to 2022 with numerous categorical features for each record.<n>We propose a fast and scalable method for analyzing and extracting significant categorical feature interactions.
arXiv Detail & Related papers (2025-01-24T21:41:26Z) - Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models [64.28420991770382]
Data-Juicer 2.0 is a data processing system backed by data processing operators spanning text, image, video, and audio modalities.<n>It supports more critical tasks including data analysis, annotation, and foundation model post-training.<n>It has been widely adopted in diverse research fields and real-world products such as Alibaba Cloud PAI.
arXiv Detail & Related papers (2024-12-23T08:29:57Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.<n>We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.<n>As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - LAMBDA: A Large Model Based Data Agent [7.240586338370509]
We introduce LArge Model Based Data Agent (LAMBDA), a novel open-source, code-free multi-agent data analysis system.<n>LAMBDA is designed to address data analysis challenges in data-driven applications.<n>It has the potential to enhance data analysis paradigms by seamlessly integrating human and artificial intelligence.
arXiv Detail & Related papers (2024-07-24T06:26:36Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
We introduce a modular, flexible, yet user-friendly software framework specifically developed to streamline computational-driven data exploration for human behavior analysis.
Our primary objective is to democratize access to advanced computational methodologies, thereby enabling researchers across disciplines to engage in detailed behavioral analysis without the need for extensive technical proficiency.
arXiv Detail & Related papers (2024-07-18T11:28:52Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
Compound AI systems (CASs) that employ LLMs as agents to accomplish knowledge-intensive tasks have garnered significant interest within database and AI communities.
silos of multimodal data sources make it difficult to identify appropriate data sources for accomplishing the task at hand.
We propose CMDBench, a benchmark modeling the complexity of enterprise data platforms.
arXiv Detail & Related papers (2024-06-02T01:10:41Z) - Dynamic Spatio-Temporal Summarization using Information Based Fusion [3.038642416291856]
We propose a dynamic-temporal data summarization technique that identifies informative features in key timesteps and fuses less informative ones.
Unlike existing methods, our method retains both raw and summarized timesteps, ensuring a comprehensive view of information changes over time.
We demonstrate the versatility of our technique across diverse datasets, encompassing particle-based flow simulations, security and surveillance applications, and biological cell interactions within the immune system.
arXiv Detail & Related papers (2023-10-02T20:21:43Z) - Integration of Domain Expert-Centric Ontology Design into the CRISP-DM for Cyber-Physical Production Systems [45.05372822216111]
Methods from Machine Learning (ML) and Data Mining (DM) have proven to be promising in extracting complex and hidden patterns from the data collected.
However, such data-driven projects, usually performed with the Cross-Industry Standard Process for Data Mining (CRISPDM), often fail due to the disproportionate amount of time needed for understanding and preparing the data.
This contribution intends present an integrated approach so that data scientists are able to more quickly and reliably gain insights into the CPPS challenges.
arXiv Detail & Related papers (2023-07-21T15:04:00Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.