Robotics Under Construction: Challenges on Job Sites
- URL: http://arxiv.org/abs/2506.19597v1
- Date: Tue, 24 Jun 2025 13:07:43 GMT
- Title: Robotics Under Construction: Challenges on Job Sites
- Authors: Haruki Uchiito, Akhilesh Bhat, Koji Kusaka, Xiaoya Zhang, Hiraku Kinjo, Honoka Uehara, Motoki Koyama, Shinji Natsume,
- Abstract summary: This paper presents an autonomous payload transportation system as an initial step toward fully unmanned construction sites.<n>Our system, based on the CD110R-3 crawler carrier, integrates autonomous navigation, fleet management, and dynamic environment-based localization.<n>Preliminary results highlight the potential challenges, including navigation in evolving terrain, environmental perception under construction-specific conditions.
- Score: 1.7111119493445044
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As labor shortages and productivity stagnation increasingly challenge the construction industry, automation has become essential for sustainable infrastructure development. This paper presents an autonomous payload transportation system as an initial step toward fully unmanned construction sites. Our system, based on the CD110R-3 crawler carrier, integrates autonomous navigation, fleet management, and GNSS-based localization to facilitate material transport in construction site environments. While the current system does not yet incorporate dynamic environment adaptation algorithms, we have begun fundamental investigations into external-sensor based perception and mapping system. Preliminary results highlight the potential challenges, including navigation in evolving terrain, environmental perception under construction-specific conditions, and sensor placement optimization for improving autonomy and efficiency. Looking forward, we envision a construction ecosystem where collaborative autonomous agents dynamically adapt to site conditions, optimizing workflow and reducing human intervention. This paper provides foundational insights into the future of robotics-driven construction automation and identifies critical areas for further technological development.
Related papers
- Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Urban Air Mobility as a System of Systems: An LLM-Enhanced Holonic Approach [2.511335572111537]
Urban Air Mobility (UAM) is an emerging System of System (SoS) that faces challenges in system architecture, planning, task management, and execution.<n>This paper presents an intelligent holonic architecture that incorporates Large Language Model (LLM) to manage the complexities of UAM.
arXiv Detail & Related papers (2025-05-01T07:39:11Z) - An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering.<n> operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints.<n>A fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control.
arXiv Detail & Related papers (2025-04-20T16:57:45Z) - ADAPT: An Autonomous Forklift for Construction Site Operation [5.331154362346256]
ADAPT (Autonomous Dynamic All-terrain Pallet Transporter) is a fully autonomous off-road forklift designed for construction environments.<n>Our system integrates AI-driven perception techniques with traditional approaches for decision making, planning, and control.<n>We validate the system through extensive real-world testing, comparing its continuous performance against an experienced human operator.
arXiv Detail & Related papers (2025-03-18T15:03:28Z) - Generative AI in Transportation Planning: A Survey [41.38132349994159]
We present the first comprehensive framework for leveraging GenAI in transportation planning.<n>From the transportation planning perspective, we examine the role of GenAI in automating descriptive, predictive, generative, simulation, and explainable tasks.<n>We address critical challenges, including data scarcity, explainability, bias mitigation, and the development of domain-specific evaluation frameworks.
arXiv Detail & Related papers (2025-03-10T10:33:31Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [82.21522417363666]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.<n>The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.<n>This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Autonomous Building Cyber-Physical Systems Using Decentralized Autonomous Organizations, Digital Twins, and Large Language Model [0.0]
This paper introduces a novel Decentralized Autonomous Building Cyber-Physical System framework.
It integrates Decentralized Autonomous Organizations, Large Language Models, and digital twins to create a smart, self-managed, operational, and financially autonomous building infrastructure.
An artificial intelligence assistant is developed to provide intuitive human-building interaction for blockchain and building operation management-related tasks.
arXiv Detail & Related papers (2024-10-25T02:34:54Z) - OASIS: Automated Assessment of Urban Pedestrian Paths at Scale [16.675093530600154]
We develop a free and open-source automated mapping system to extract sidewalk network data using mobile physical devices.
We describe a prototype system trained and tested with imagery collected in real-world settings, alongside human surveyors who are part of the local transit pathway review team.
arXiv Detail & Related papers (2023-03-04T01:32:59Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
We need intelligent robots for mobile construction, the process of navigating in an environment and modifying its structure according to a geometric design.
In this task, a major robot vision and learning challenge is how to exactly achieve the design without GPS.
We benchmark the performance of a handcrafted policy with basic localization and planning, and state-of-the-art deep reinforcement learning methods.
arXiv Detail & Related papers (2021-03-31T00:05:54Z) - Machine Learning-Based Automated Design Space Exploration for Autonomous
Aerial Robots [55.056709056795206]
Building domain-specific architectures for autonomous aerial robots is challenging due to a lack of systematic methodology for designing onboard compute.
We introduce a novel performance model called the F-1 roofline to help architects understand how to build a balanced computing system.
To navigate the cyber-physical design space automatically, we subsequently introduce AutoPilot.
arXiv Detail & Related papers (2021-02-05T03:50:54Z) - Symbiotic System Design for Safe and Resilient Autonomous Robotics in
Offshore Wind Farms [3.5409202655473724]
Barriers to Beyond Visual Line of Sight (BVLOS) robotics include operational safety compliance and resilience.
We propose a symbiotic system; reflecting the lifecycle learning and co-evolution with knowledge sharing for mutual gain of robotic platforms and remote human operators.
Our methodology enables the run-time verification of safety, reliability and resilience during autonomous missions.
arXiv Detail & Related papers (2021-01-23T11:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.