論文の概要: Unsupervised Data Generation for Offline Reinforcement Learning: A Perspective from Model
- arxiv url: http://arxiv.org/abs/2506.19643v1
- Date: Tue, 24 Jun 2025 14:08:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.663531
- Title: Unsupervised Data Generation for Offline Reinforcement Learning: A Perspective from Model
- Title(参考訳): オフライン強化学習のための教師なしデータ生成:モデルからの展望
- Authors: Shuncheng He, Hongchang Zhang, Jianzhun Shao, Yuhang Jiang, Xiangyang Ji,
- Abstract要約: オフライン強化学習(RL)は、最近RL研究者から関心が高まりつつある。
オフラインRLの性能は、オンラインRLのフィードバックによって修正できる配布外問題に悩まされる。
本稿では、まず、バッチデータとオフラインRLアルゴリズムの性能を理論的に橋渡しする。
タスクに依存しない環境では、教師なしのRLによって訓練された一連のポリシーは、パフォーマンスギャップにおける最悪の後悔を最小限に抑えることができることを示す。
- 参考スコア(独自算出の注目度): 57.20064815347607
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Offline reinforcement learning (RL) recently gains growing interests from RL researchers. However, the performance of offline RL suffers from the out-of-distribution problem, which can be corrected by feedback in online RL. Previous offline RL research focuses on restricting the offline algorithm in in-distribution even in-sample action sampling. In contrast, fewer work pays attention to the influence of the batch data. In this paper, we first build a bridge over the batch data and the performance of offline RL algorithms theoretically, from the perspective of model-based offline RL optimization. We draw a conclusion that, with mild assumptions, the distance between the state-action pair distribution generated by the behavioural policy and the distribution generated by the optimal policy, accounts for the performance gap between the policy learned by model-based offline RL and the optimal policy. Secondly, we reveal that in task-agnostic settings, a series of policies trained by unsupervised RL can minimize the worst-case regret in the performance gap. Inspired by the theoretical conclusions, UDG (Unsupervised Data Generation) is devised to generate data and select proper data for offline training under tasks-agnostic settings. Empirical results demonstrate that UDG can outperform supervised data generation on solving unknown tasks.
- Abstract(参考訳): オフライン強化学習(RL)は、最近RL研究者から関心が高まりつつある。
しかし、オフラインRLの性能は、オンラインRLのフィードバックによって修正できる分布外問題に悩まされている。
従来のオフラインRL研究は、インサンプルアクションサンプリングさえも、配信中のオフラインアルゴリズムを制限することに重点を置いていた。
対照的に、バッチデータの影響に注意を払う作業が少ない。
本稿では、モデルベースオフラインRL最適化の観点から、まず、バッチデータとオフラインRLアルゴリズムの性能を理論的に構築する。
モデルに基づくオフラインRLで学習したポリシーと最適ポリシーの間の性能差を考慮し, 軽微な仮定で, 行動ポリシーによって生成された状態-作用対分布と最適ポリシーによって生成された分布との距離を推定する。
第二に、タスクに依存しない環境では、教師なしのRLによって訓練された一連のポリシーは、パフォーマンスギャップにおける最悪の後悔を最小限に抑えることができる。
理論的な結論にインスパイアされたUDG(Unsupervised Data Generation)は、タスクに依存しない設定でオフライントレーニング用のデータを生成し、適切なデータを選択するために考案されている。
経験的結果は、UDGが未知のタスクを解く上で、教師付きデータ生成より優れていることを示している。
関連論文リスト
- Bridging Distributionally Robust Learning and Offline RL: An Approach to
Mitigate Distribution Shift and Partial Data Coverage [32.578787778183546]
オフライン強化学習(RL)アルゴリズムは、過去の(オフライン)データを用いて最適な警察を学習する。
オフラインRLの主な課題の1つは、分散シフトである。
分散ロバスト学習(DRL)フレームワークを用いた2つのオフラインRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-27T19:19:30Z) - Don't Change the Algorithm, Change the Data: Exploratory Data for
Offline Reinforcement Learning [147.61075994259807]
オフラインRLに対するデータ中心型アプローチであるオフラインRL(ExORL)の探索データを提案する。
ExORLは最初、教師なしの報酬のない探索でデータを生成し、オフラインのRLでポリシーをトレーニングする前に、そのデータを下流の報酬でラベル付けする。
探索データにより、オフライン固有の変更なしに、バニラオフポリティRLアルゴリズムが、ダウンストリームタスクで最先端のオフラインRLアルゴリズムより優れているか、あるいは一致することが判明した。
論文 参考訳(メタデータ) (2022-01-31T18:39:27Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
適応行動優先型オフラインモデルに基づくRL(Adaptive Behavioral Priors:MABE)を導入する。
MABEは、ドメイン内の一般化をサポートする動的モデルと、ドメイン間の一般化をサポートする振る舞いの事前が相補的であることの発見に基づいている。
クロスドメインの一般化を必要とする実験では、MABEが先行手法より優れていることが判明した。
論文 参考訳(メタデータ) (2021-06-16T20:48:49Z) - Instabilities of Offline RL with Pre-Trained Neural Representation [127.89397629569808]
オフライン強化学習(RL)では、オフラインデータを利用して、評価対象のポリシーのそれとは大きく異なる分布からデータが収集されるシナリオでポリシーを評価する(または学習する)ことを目指しています。
最近の理論的進歩は、そのようなサンプル効率の良いオフラインRLが確かにある強い表現条件が保持されることを示した。
本研究は,オフラインrlメソッドの安定性を評価するために,経験的視点からこれらの問題を考察する。
論文 参考訳(メタデータ) (2021-03-08T18:06:44Z) - Representation Matters: Offline Pretraining for Sequential Decision
Making [27.74988221252854]
本稿では,オフラインデータを逐次意思決定に組み込む手法について考察する。
教師なし学習目標を用いた事前学習は,政策学習アルゴリズムの性能を劇的に向上させることができる。
論文 参考訳(メタデータ) (2021-02-11T02:38:12Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
オフライン強化学習(英語: offline reinforcement learning, RL)とは、以前に収集された大量のデータから完全に学習ポリシーを学習する問題を指す。
既存のモデルベースRLアルゴリズムは,すでにオフライン設定において大きな利益を上げていることを示す。
本稿では,既存のモデルに基づくRL法を,力学の不確実性によって人為的に罰せられる報酬で適用することを提案する。
論文 参考訳(メタデータ) (2020-05-27T08:46:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。