When Can We Reuse a Calibration Set for Multiple Conformal Predictions?
- URL: http://arxiv.org/abs/2506.19689v1
- Date: Tue, 24 Jun 2025 14:57:25 GMT
- Title: When Can We Reuse a Calibration Set for Multiple Conformal Predictions?
- Authors: A. A. Balinsky, A. D. Balinsky,
- Abstract summary: We show how e-conformal prediction, in conjunction with Hoeffding's inequality, can enable the repeated use of a single calibration set.<n>We train a deep neural network and utilise a calibration set to estimate a Hoeffding correction.<n>This correction allows us to apply a modified Markov's inequality, leading to the construction of prediction sets with quantifiable confidence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable uncertainty quantification is crucial for the trustworthiness of machine learning applications. Inductive Conformal Prediction (ICP) offers a distribution-free framework for generating prediction sets or intervals with user-specified confidence. However, standard ICP guarantees are marginal and typically require a fresh calibration set for each new prediction to maintain their validity. This paper addresses this practical limitation by demonstrating how e-conformal prediction, in conjunction with Hoeffding's inequality, can enable the repeated use of a single calibration set with a high probability of preserving the desired coverage. Through a case study on the CIFAR-10 dataset, we train a deep neural network and utilise a calibration set to estimate a Hoeffding correction. This correction allows us to apply a modified Markov's inequality, leading to the construction of prediction sets with quantifiable confidence. Our results illustrate the feasibility of maintaining provable performance in conformal prediction while enhancing its practicality by reducing the need for repeated calibration. The code for this work is publicly available.
Related papers
- COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COIN is an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question.<n>COIN estimates the empirical error rate on a calibration set and applies confidence interval methods to establish a high-probability upper bound on the true error rate.<n>We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data.
arXiv Detail & Related papers (2025-06-25T07:04:49Z) - Adaptive Temperature Scaling with Conformal Prediction [47.51764759462074]
We propose to the best of our knowledge the first method for assigning calibrated probabilities to elements of a conformal prediction set.<n>Our approach frames this as an adaptive calibration problem, selecting an input-specific temperature parameter to match the desired coverage level.
arXiv Detail & Related papers (2025-05-21T12:18:15Z) - Semi-Supervised Risk Control via Prediction-Powered Inference [14.890609936348277]
Risk-controlling prediction sets (RCPS) is a tool for transforming the output of any machine learning model to design a predictive rule with rigorous error rate control.<n>We introduce a semi-supervised calibration procedure that leverages unlabeled data to rigorously tune the hyper- parameter.<n>Our procedure builds upon the prediction-powered inference framework, carefully tailoring it to risk-controlling tasks.
arXiv Detail & Related papers (2024-12-15T13:00:23Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.<n>Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.<n>We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors [0.0]
Conformal prediction requires exchangeable data to ensure valid prediction sets at a user-specified significance level.
Adaptive conformal inference (ACI) was introduced to address this limitation.
We show that ACI does not require the use of conformal predictors; instead, it can be implemented with the more general confidence predictors.
arXiv Detail & Related papers (2024-09-23T21:02:33Z) - Towards Certification of Uncertainty Calibration under Adversarial Attacks [96.48317453951418]
We show that attacks can significantly harm calibration, and thus propose certified calibration as worst-case bounds on calibration under adversarial perturbations.<n>We propose novel calibration attacks and demonstrate how they can improve model calibration through textitadversarial calibration training
arXiv Detail & Related papers (2024-05-22T18:52:09Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Few-Shot Calibration of Set Predictors via Meta-Learned
Cross-Validation-Based Conformal Prediction [33.33774397643919]
This paper introduces a novel meta-learning solution that aims at reducing the set prediction size.
It builds on cross-validation-based CP, rather than the less efficient validation-based CP.
It preserves formal per-task calibration guarantees, rather than less stringent task-marginal guarantees.
arXiv Detail & Related papers (2022-10-06T17:21:03Z) - Posterior Probability Matters: Doubly-Adaptive Calibration for Neural Predictions in Online Advertising [29.80454356173723]
Field-level calibration is fine-grained and more practical.
AdaCalib learns an isotonic function family to calibrate model predictions.
Experiments verify that AdaCalib achieves significant improvement on calibration performance.
arXiv Detail & Related papers (2022-05-15T14:27:19Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
We introduce the framework of proper calibration errors, which relates every calibration error to a proper score.
This relationship can be used to reliably quantify the model calibration improvement.
arXiv Detail & Related papers (2022-03-15T12:46:08Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.