Near-optimal estimates for the $\ell^p$-Lipschitz constants of deep random ReLU neural networks
- URL: http://arxiv.org/abs/2506.19695v1
- Date: Tue, 24 Jun 2025 15:02:16 GMT
- Title: Near-optimal estimates for the $\ell^p$-Lipschitz constants of deep random ReLU neural networks
- Authors: Sjoerd Dirksen, Patrick Finke, Paul Geuchen, Dominik Stöger, Felix Voigtlaender,
- Abstract summary: We derive high probability upper and lower bounds for wide networks that differ at most by a factor that is logarithmic in the network's width and linear in its depth.<n>Remarkably, the behavior of the $ellp$-Lipschitz constant varies significantly between the regimes $ p in [1,2) $ and $ p in [2,infty] $.
- Score: 3.684988521329369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the $\ell^p$-Lipschitz constants of ReLU neural networks $\Phi: \mathbb{R}^d \to \mathbb{R}$ with random parameters for $p \in [1,\infty]$. The distribution of the weights follows a variant of the He initialization and the biases are drawn from symmetric distributions. We derive high probability upper and lower bounds for wide networks that differ at most by a factor that is logarithmic in the network's width and linear in its depth. In the special case of shallow networks, we obtain matching bounds. Remarkably, the behavior of the $\ell^p$-Lipschitz constant varies significantly between the regimes $ p \in [1,2) $ and $ p \in [2,\infty] $. For $p \in [2,\infty]$, the $\ell^p$-Lipschitz constant behaves similarly to $\Vert g\Vert_{p'}$, where $g \in \mathbb{R}^d$ is a $d$-dimensional standard Gaussian vector and $1/p + 1/p' = 1$. In contrast, for $p \in [1,2)$, the $\ell^p$-Lipschitz constant aligns more closely to $\Vert g \Vert_{2}$.
Related papers
- Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$<n>We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
We consider the randomized communication complexity of the distributed $ell_p$-regression problem in the coordinator model.
For $p = 2$, i.e., least squares regression, we give the first optimal bound of $tildeTheta(sd2 + sd/epsilon)$ bits.
For $p in (1,2)$,we obtain an $tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound.
arXiv Detail & Related papers (2023-07-11T08:51:53Z) - Optimal Sketching Bounds for Sparse Linear Regression [116.30196615349226]
We study oblivious sketching for $k$-sparse linear regression under various loss functions such as an $ell_p$ norm, or from a broad class of hinge-like loss functions.
We show that for sparse $ell$vareps regression, there is an oblivious distribution over sketches with $Theta(klog(d/k)/varepsilon2)$ rows, which is tight up to a constant factor.
We also show that sketching $O(mu2 klog(mu n d/varepsilon)/var
arXiv Detail & Related papers (2023-04-05T07:24:19Z) - A spectral least-squares-type method for heavy-tailed corrupted
regression with unknown covariance \& heterogeneous noise [2.019622939313173]
We revisit heavy-tailed corrupted least-squares linear regression assuming to have a corrupted $n$-sized label-feature sample of at most $epsilon n$ arbitrary outliers.
We propose a near-optimal computationally tractable estimator, based on the power method, assuming no knowledge on $(Sigma,Xi) nor the operator norm of $Xi$.
arXiv Detail & Related papers (2022-09-06T23:37:31Z) - Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor
Decompositions [51.19236668224547]
We study low rank approximation of tensors, focusing on the tensor train and Tucker decompositions.
For tensor train decomposition, we give a bicriteria $(1 + eps)$-approximation algorithm with a small bicriteria rank and $O(q cdot nnz(A))$ running time.
In addition, we extend our algorithm to tensor networks with arbitrary graphs.
arXiv Detail & Related papers (2022-07-15T11:55:09Z) - Low-degree learning and the metric entropy of polynomials [44.99833362998488]
We prove that any (deterministic or randomized) algorithm which learns $mathscrF_nd$ with $L$-accuracy $varepsilon$ requires at least $Omega(sqrtvarepsilon)2dlog n leq log mathsfM(mathscrF_n,d,|cdot|_L,varepsilon) satisfies the two-sided estimate $$c (1-varepsilon)2dlog
arXiv Detail & Related papers (2022-03-17T23:52:08Z) - ReLU Network Approximation in Terms of Intrinsic Parameters [5.37133760455631]
We study the approximation error of ReLU networks in terms of the number of intrinsic parameters.
We design a ReLU network with only three intrinsic parameters to approximate H"older continuous functions with an arbitrarily small error.
arXiv Detail & Related papers (2021-11-15T18:20:38Z) - Ridgeless Interpolation with Shallow ReLU Networks in $1D$ is Nearest
Neighbor Curvature Extrapolation and Provably Generalizes on Lipschitz
Functions [16.75218291152252]
We prove a precise geometric description of all one layer ReLU networks $z(x;theta)$ with a single linear unit.
We refer to them as ridgeless ReLU interpolants.
Our results show that ridgeless ReLU interpolants achieve the best possible generalization for learning $1d$ Lipschitz functions.
arXiv Detail & Related papers (2021-09-27T11:32:24Z) - Deep Neural Networks with ReLU-Sine-Exponential Activations Break Curse
of Dimensionality on H\"older Class [6.476766717110237]
We construct neural networks with ReLU, sine and $2x$ as activation functions.
In addition to its supper expressive power, functions implemented by ReLU-sine-$2x$ networks are (generalized) differentiable.
arXiv Detail & Related papers (2021-02-28T15:57:42Z) - Optimal Approximation Rate of ReLU Networks in terms of Width and Depth [5.37133760455631]
This paper concentrates on the approximation power of deep feed-forward neural networks in terms of width and depth.
It is proved that ReLU networks with width $mathcalObig(maxdlfloor N1/drfloor,, N+2big)$ and depth $mathcalO(L)$ can approximate a H"older continuous function on $[0,1]d$ with an approximation rate $mathcalObig(lambdasqrtd (N2L2ln
arXiv Detail & Related papers (2021-02-28T13:15:55Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z) - Deep Network with Approximation Error Being Reciprocal of Width to Power
of Square Root of Depth [4.468952886990851]
A new network with super approximation power is introduced.
This network is built with Floor ($lfloor xrfloor$) or ReLU ($max0,x$) activation function in each neuron.
arXiv Detail & Related papers (2020-06-22T13:27:33Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.