MultifacetEval: Multifaceted Evaluation to Probe LLMs in Mastering Medical Knowledge
- URL: http://arxiv.org/abs/2406.02919v1
- Date: Wed, 5 Jun 2024 04:15:07 GMT
- Title: MultifacetEval: Multifaceted Evaluation to Probe LLMs in Mastering Medical Knowledge
- Authors: Yuxuan Zhou, Xien Liu, Chen Ning, Ji Wu,
- Abstract summary: Large language models (LLMs) have excelled across domains, delivering notable performance on medical evaluation benchmarks.
However, there still exists a significant gap between the reported performance and the practical effectiveness in real-world medical scenarios.
We develop a novel evaluation framework MultifacetEval to examine the degree and coverage of LLMs in encoding and mastering medical knowledge.
- Score: 4.8004472307210255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have excelled across domains, also delivering notable performance on the medical evaluation benchmarks, such as MedQA. However, there still exists a significant gap between the reported performance and the practical effectiveness in real-world medical scenarios. In this paper, we aim to explore the causes of this gap by employing a multifaceted examination schema to systematically probe the actual mastery of medical knowledge by current LLMs. Specifically, we develop a novel evaluation framework MultifacetEval to examine the degree and coverage of LLMs in encoding and mastering medical knowledge at multiple facets (comparison, rectification, discrimination, and verification) concurrently. Based on the MultifacetEval framework, we construct two multifaceted evaluation datasets: MultiDiseK (by producing questions from a clinical disease knowledge base) and MultiMedQA (by rephrasing each question from a medical benchmark MedQA into multifaceted questions). The experimental results on these multifaceted datasets demonstrate that the extent of current LLMs in mastering medical knowledge is far below their performance on existing medical benchmarks, suggesting that they lack depth, precision, and comprehensiveness in mastering medical knowledge. Consequently, current LLMs are not yet ready for application in real-world medical tasks. The codes and datasets are available at https://github.com/THUMLP/MultifacetEval.
Related papers
- CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - Reliable and diverse evaluation of LLM medical knowledge mastery [6.825565574784612]
We propose a novel framework that generates reliable and diverse test samples to evaluate medical-specific LLMs.
We use our proposed framework to systematically investigate the mastery of medical factual knowledge of 12 well-known LLMs.
arXiv Detail & Related papers (2024-09-22T03:13:38Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
This paper introduces MedExQA, a novel benchmark in medical question-answering to evaluate large language models' (LLMs) understanding of medical knowledge through explanations.
By constructing datasets across five distinct medical specialties, we address a major gap in current medical QA benchmarks.
Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology.
arXiv Detail & Related papers (2024-06-10T14:47:04Z) - TCMD: A Traditional Chinese Medicine QA Dataset for Evaluating Large Language Models [22.76485170022542]
We introduce a new medical question-answering (QA) dataset that contains massive manual instruction for solving Traditional Chinese Medicine examination tasks.
Our TCMD collects massive questions across diverse domains with their annotated medical subjects.
arXiv Detail & Related papers (2024-06-07T13:48:15Z) - Performance of large language models in numerical vs. semantic medical knowledge: Benchmarking on evidence-based Q&As [1.0034156461900003]
Large language models (LLMs) show promising results in many aspects of language-based clinical practice.
We used a comprehensive medical knowledge graph (encompassed data from more than 50,00 peer-reviewed articles) and created the "EBMQA"
We benchmarked this dataset using more than 24,500 questions on two state-of-the-art LLMs: Chat-GPT4 and Claude3-Opus.
We found that both LLMs excelled more in semantic than numerical QAs, with Claude3 surpassing GPT4 in numerical QAs.
arXiv Detail & Related papers (2024-06-06T08:41:46Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
We introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding framework.
The framework integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions.
arXiv Detail & Related papers (2024-03-11T10:57:45Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQA is a comprehensive benchmark in the field of medical specialization.
This work introduces RJUA-MedDQA, a comprehensive benchmark in the field of medical specialization.
arXiv Detail & Related papers (2024-02-19T06:57:02Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM [48.16696073640864]
We introduce OmniMedVQA, a novel comprehensive medical Visual Question Answering (VQA) benchmark.
All images in this benchmark are sourced from authentic medical scenarios.
We have found that existing LVLMs struggle to address these medical VQA problems effectively.
arXiv Detail & Related papers (2024-02-14T13:51:56Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.