Data-Driven Dynamic Factor Modeling via Manifold Learning
- URL: http://arxiv.org/abs/2506.19945v1
- Date: Tue, 24 Jun 2025 18:40:40 GMT
- Title: Data-Driven Dynamic Factor Modeling via Manifold Learning
- Authors: Graeme Baker, Agostino Capponi, J. Antonio Sidaoui,
- Abstract summary: We use Anisotropic Diffusion Maps, a nonlinear manifold learning technique introduced by Singer and Coifman.<n>We approximate the embedding dynamics using linear diffusions and Kalman filtering.<n>We apply our method to the stress testing of equity portfolios using a combination of financial and macroeconomic factors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a data-driven dynamic factor framework where a response variable depends on a high-dimensional set of covariates, without imposing any parametric model on the joint dynamics. Leveraging Anisotropic Diffusion Maps, a nonlinear manifold learning technique introduced by Singer and Coifman, our framework uncovers the joint dynamics of the covariates and responses in a purely data-driven way. We approximate the embedding dynamics using linear diffusions, and exploit Kalman filtering to predict the evolution of the covariates and response variables directly from the diffusion map embedding space. We generalize Singer's convergence rate analysis of the graph Laplacian from the case of independent uniform samples on a compact manifold to the case of time series arising from Langevin diffusions in Euclidean space. Furthermore, we provide rigorous justification for our procedure by showing the robustness of approximations of the diffusion map coordinates by linear diffusions, and the convergence of ergodic averages under standard spectral assumptions on the underlying dynamics. We apply our method to the stress testing of equity portfolios using a combination of financial and macroeconomic factors from the Federal Reserve's supervisory scenarios. We demonstrate that our data-driven stress testing method outperforms standard scenario analysis and Principal Component Analysis benchmarks through historical backtests spanning three major financial crises, achieving reductions in mean absolute error of up to 55% and 39% for scenario-based portfolio return prediction, respectively.
Related papers
- Uncertainty quantification of neural network models of evolving processes via Langevin sampling [0.7329200485567827]
We propose a scalable, approximate inference hypernetwork framework for a general model of history-dependent processes.<n>We demonstrate performance of the ensemble sampling hypernetwork on chemical reaction and material physics data.
arXiv Detail & Related papers (2025-04-21T04:45:40Z) - Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space.<n>Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries.<n> Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability.
arXiv Detail & Related papers (2025-03-28T16:44:28Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.<n>We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.<n>Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Dynamical Regimes of Diffusion Models [14.797301819675454]
We study generative diffusion models in the regime where the dimension of space and the number of data are large.
Our analysis reveals three distinct dynamical regimes during the backward generative diffusion process.
The dependence of the collapse time on the dimension and number of data provides a thorough characterization of the curse of dimensionality for diffusion models.
arXiv Detail & Related papers (2024-02-28T17:19:26Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.