VoxelOpt: Voxel-Adaptive Message Passing for Discrete Optimization in Deformable Abdominal CT Registration
- URL: http://arxiv.org/abs/2506.19975v1
- Date: Tue, 24 Jun 2025 19:44:04 GMT
- Title: VoxelOpt: Voxel-Adaptive Message Passing for Discrete Optimization in Deformable Abdominal CT Registration
- Authors: Hang Zhang, Yuxi Zhang, Jiazheng Wang, Xiang Chen, Renjiu Hu, Xin Tian, Gaolei Li, Min Liu,
- Abstract summary: We propose VoxelOpt, a discrete optimization-based deformable image registration framework.<n>It combines the strengths of learning-based and iterative methods to achieve a better balance between registration accuracy and runtime.<n>In abdominal CT registration, these changes allow VoxelOpt to outperform leading iterative in both efficiency and accuracy, while matching state-of-the-art learning-based methods trained with label supervision.
- Score: 15.78340001680369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in neural networks have improved deformable image registration (DIR) by amortizing iterative optimization, enabling fast and accurate DIR results. However, learning-based methods often face challenges with limited training data, large deformations, and tend to underperform compared to iterative approaches when label supervision is unavailable. While iterative methods can achieve higher accuracy in such scenarios, they are considerably slower than learning-based methods. To address these limitations, we propose VoxelOpt, a discrete optimization-based DIR framework that combines the strengths of learning-based and iterative methods to achieve a better balance between registration accuracy and runtime. VoxelOpt uses displacement entropy from local cost volumes to measure displacement signal strength at each voxel, which differs from earlier approaches in three key aspects. First, it introduces voxel-wise adaptive message passing, where voxels with lower entropy receives less influence from their neighbors. Second, it employs a multi-level image pyramid with 27-neighbor cost volumes at each level, avoiding exponential complexity growth. Third, it replaces hand-crafted features or contrastive learning with a pretrained foundational segmentation model for feature extraction. In abdominal CT registration, these changes allow VoxelOpt to outperform leading iterative in both efficiency and accuracy, while matching state-of-the-art learning-based methods trained with label supervision. The source code will be available at https://github.com/tinymilky/VoxelOpt
Related papers
- A Stable Whitening Optimizer for Efficient Neural Network Training [101.89246340672246]
Building on the Shampoo family of algorithms, we identify and alleviate three key issues, resulting in the proposed SPlus method.<n>First, we find that naive Shampoo is prone to divergence when matrix-inverses are cached for long periods.<n>Second, we adapt a shape-aware scaling to enable learning rate transfer across network width.<n>Third, we find that high learning rates result in large parameter noise, and propose a simple iterate-averaging scheme which unblocks faster learning.
arXiv Detail & Related papers (2025-06-08T18:43:31Z) - Leveraging Stochastic Depth Training for Adaptive Inference [1.996143466020199]
We propose a simpler yet effective alternative for adaptive inference with a zero-overhead, single-model, and time-predictable inference.<n>Compared to original ResNets, our method shows improvements of up to 2X in power efficiency at accuracy drops as low as 0.71%.
arXiv Detail & Related papers (2025-05-23T08:36:56Z) - Flow-GRPO: Training Flow Matching Models via Online RL [75.70017261794422]
We propose Flow-GRPO, the first method integrating online reinforcement learning (RL) into flow matching models.<n>Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Equation (ODE) into an equivalent Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original inference timestep number.
arXiv Detail & Related papers (2025-05-08T17:58:45Z) - Fast T2T: Optimization Consistency Speeds Up Diffusion-Based Training-to-Testing Solving for Combinatorial Optimization [83.65278205301576]
We propose to learn direct mappings from different noise levels to the optimal solution for a given instance, facilitating high-quality generation with minimal shots.<n>This is achieved through an optimization consistency training protocol, which minimizes the difference among samples.<n>Experiments on two popular tasks, the Traveling Salesman Problem (TSP) and Maximal Independent Set (MIS), demonstrate the superiority of Fast T2T regarding both solution quality and efficiency.
arXiv Detail & Related papers (2025-02-05T07:13:43Z) - Linearly Convergent Mixup Learning [0.0]
We present two novel algorithms that extend to a broader range of binary classification models.<n>Unlike gradient-based approaches, our algorithms do not require hyper parameters like learning rates, simplifying their implementation and optimization.<n>Our algorithms achieve faster convergence to the optimal solution compared to descent gradient approaches, and that mixup data augmentation consistently improves the predictive performance across various loss functions.
arXiv Detail & Related papers (2025-01-14T02:33:40Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Gaussian Primitives for Deformable Image Registration [9.184092856125067]
Experimental results on brain MRI, lung CT, and cardiac MRI datasets demonstrate that GaussianDIR outperforms existing DIR methods in both accuracy and efficiency.
As a training-free approach, it challenges the stereotype that iterative methods are inherently slow and transcend the limitations of poor generalization.
arXiv Detail & Related papers (2024-06-05T15:44:54Z) - Highway Graph to Accelerate Reinforcement Learning [18.849312069946993]
Reinforcement Learning algorithms often struggle with low training efficiency.<n>We introduce the highway graph to model state transitions.<n>Our method learns significantly faster than established and state-of-the-art RL algorithms.
arXiv Detail & Related papers (2024-05-20T02:09:07Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Improving Point Cloud Based Place Recognition with Ranking-based Loss
and Large Batch Training [1.116812194101501]
The paper presents a simple and effective learning-based method for computing a discriminative 3D point cloud descriptor.
We employ recent advances in image retrieval and propose a modified version of a loss function based on a differentiable average precision approximation.
arXiv Detail & Related papers (2022-03-02T09:29:28Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
Semi-supervised learning (SSL) has long been proved to be an effective technique to construct powerful models with limited labels.
Regularization-based methods which force the perturbed samples to have similar predictions with the original ones have attracted much attention.
We propose a novel contrastive loss to guide the embedding of the learned network to change linearly between samples.
arXiv Detail & Related papers (2022-02-24T06:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.