Achieving Trustworthy Real-Time Decision Support Systems with Low-Latency Interpretable AI Models
- URL: http://arxiv.org/abs/2506.20018v1
- Date: Tue, 24 Jun 2025 21:22:25 GMT
- Title: Achieving Trustworthy Real-Time Decision Support Systems with Low-Latency Interpretable AI Models
- Authors: Zechun Deng, Ziwei Liu, Ziqian Bi, Junhao Song, Chia Xin Liang, Joe Yeong, Junfeng Hao,
- Abstract summary: This paper investigates real-time decision support systems that leverage low-latency AI models.<n>It brings together recent progress in holistic AI-driven decision tools, integration with Edge-IoT technologies, and approaches for effective human-AI teamwork.<n>The conclusions set the stage for future breakthroughs in this fast-changing area.
- Score: 26.65052167103414
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper investigates real-time decision support systems that leverage low-latency AI models, bringing together recent progress in holistic AI-driven decision tools, integration with Edge-IoT technologies, and approaches for effective human-AI teamwork. It looks into how large language models can assist decision-making, especially when resources are limited. The research also examines the effects of technical developments such as DeLLMa, methods for compressing models, and improvements for analytics on edge devices, while also addressing issues like limited resources and the need for adaptable frameworks. Through a detailed review, the paper offers practical perspectives on development strategies and areas of application, adding to the field by pointing out opportunities for more efficient and flexible AI-supported systems. The conclusions set the stage for future breakthroughs in this fast-changing area, highlighting how AI can reshape real-time decision support.
Related papers
- Artificial Intelligence In Patent And Market Intelligence: A New Paradigm For Technology Scouting [2.9954831490478044]
This paper presents the development of an AI powered software platform to transform technology scouting and solution discovery in industrial R&D.<n>The proposed platform utilizes cutting edge LLM capabilities including semantic understanding, contextual reasoning, and cross-domain knowledge extraction.<n>The system processes unstructured patent texts, such as claims and technical descriptions, and systematically extracts potential innovations aligned with the given problem context.<n>In addition to patent analysis, the platform integrates commercial intelligence by identifying validated market solutions and active organizations addressing similar challenges.
arXiv Detail & Related papers (2025-07-27T15:22:39Z) - AI Flow: Perspectives, Scenarios, and Approaches [51.38621621775711]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - Onboard Optimization and Learning: A Survey [10.511932152633253]
Onboard learning is a transformative approach in edge AI, enabling real-time data processing, decision-making, and adaptive model training directly on resource-constrained devices.<n>However, onboard learning faces challenges such as limited computational resources, high inference costs, and security vulnerabilities.<n>This survey explores techniques that optimize model efficiency, accelerate inference, and support collaborative learning across distributed devices.
arXiv Detail & Related papers (2025-05-07T07:47:14Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models [16.16798813072285]
The rapid advancement of artificial intelligence (AI) technologies has led to an increasing deployment of AI models on edge and terminal devices.<n>This survey comprehensively explores the current state, technical challenges, and future trends of on-device AI models.
arXiv Detail & Related papers (2025-03-08T02:59:51Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - XEdgeAI: A Human-centered Industrial Inspection Framework with Data-centric Explainable Edge AI Approach [2.0209172586699173]
This paper introduces a novel XAI-integrated Visual Quality Inspection framework.
Our framework incorporates XAI and the Large Vision Language Model to deliver human-centered interpretability.
This approach paves the way for the broader adoption of reliable and interpretable AI tools in critical industrial applications.
arXiv Detail & Related papers (2024-07-16T14:30:24Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.