A Modular Multitask Reasoning Framework Integrating Spatio-temporal Models and LLMs
- URL: http://arxiv.org/abs/2506.20073v1
- Date: Wed, 25 Jun 2025 00:55:34 GMT
- Title: A Modular Multitask Reasoning Framework Integrating Spatio-temporal Models and LLMs
- Authors: Kethmi Hirushini Hettige, Jiahao Ji, Cheng Long, Shili Xiang, Gao Cong, Jingyuan Wang,
- Abstract summary: We introduce STReason, a framework that integrates large language models with analytical capabilities for multi-task inference and execution.<n>We show that STReason significantly outperforms LLM baselines across all metrics, particularly in excelling in complex, reasoningintensive-temporal scenarios.<n>Human evaluations validate STReason's credibility and practical utility, demonstrating potential to reduce expert workload and broaden the applicability to real-world, multi-faceted decision scenarios.
- Score: 38.304628241767055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatio-temporal data mining plays a pivotal role in informed decision making across diverse domains. However, existing models are often restricted to narrow tasks, lacking the capacity for multi-task inference and complex long-form reasoning that require generation of in-depth, explanatory outputs. These limitations restrict their applicability to real-world, multi-faceted decision scenarios. In this work, we introduce STReason, a novel framework that integrates the reasoning strengths of large language models (LLMs) with the analytical capabilities of spatio-temporal models for multi-task inference and execution. Without requiring task-specific finetuning, STReason leverages in-context learning to decompose complex natural language queries into modular, interpretable programs, which are then systematically executed to generate both solutions and detailed rationales. To facilitate rigorous evaluation, we construct a new benchmark dataset and propose a unified evaluation framework with metrics specifically designed for long-form spatio-temporal reasoning. Experimental results show that STReason significantly outperforms advanced LLM baselines across all metrics, particularly excelling in complex, reasoning-intensive spatio-temporal scenarios. Human evaluations further validate STReason's credibility and practical utility, demonstrating its potential to reduce expert workload and broaden the applicability to real-world spatio-temporal tasks. We believe STReason provides a promising direction for developing more capable and generalizable spatio-temporal reasoning systems.
Related papers
- RemoteReasoner: Towards Unifying Geospatial Reasoning Workflow [19.502882116487005]
Remote sensing imagery presents vast, inherently unstructured spatial data.<n>We propose RemoteReasoner, a flexible and robust workflow for remote sensing reasoning tasks.<n>Preliminary experiments demonstrated that RemoteReasoner achieves remarkable performance across multi-granularity reasoning tasks.
arXiv Detail & Related papers (2025-07-25T13:58:11Z) - Reasoning Meets Personalization: Unleashing the Potential of Large Reasoning Model for Personalized Generation [21.89080753903469]
We present the first systematic evaluation of large reasoning models (LRMs) for personalization tasks.<n>Our analysis identifies three key limitations: divergent thinking, misalignment of response formats, and ineffective use of retrieved information.<n>We propose Reinforced Reasoning for Personalization (model), a novel framework that incorporates a hierarchical reasoning thought template to guide LRMs in generating structured outputs.
arXiv Detail & Related papers (2025-05-23T07:30:13Z) - AdaReasoner: Adaptive Reasoning Enables More Flexible Thinking in Large Language Models [32.51746551988431]
AdaReasoner is an LLM-agnostic plugin designed for any LLM to automate adaptive reasoning configurations.<n>AdaReasoner is trained using a reinforcement learning (RL) framework, combining a factorized action space with a targeted exploration strategy.<n>It consistently outperforms standard baselines, preserves out-of-distribution robustness, and yield gains on knowledge-intensive tasks through tailored prompts.
arXiv Detail & Related papers (2025-05-22T22:06:11Z) - ModelingAgent: Bridging LLMs and Mathematical Modeling for Real-World Challenges [72.19809898215857]
We introduce ModelingBench, a novel benchmark featuring real-world-inspired, open-ended problems from math modeling competitions across diverse domains.<n>These tasks require translating natural language into formal mathematical formulations, applying appropriate tools, and producing structured, defensible reports.<n>We also present ModelingAgent, a multi-agent framework that coordinates tool use, supports structured, creative solutions, and generates well-grounded, creative solutions.
arXiv Detail & Related papers (2025-05-21T03:33:23Z) - Benchmarking Spatiotemporal Reasoning in LLMs and Reasoning Models: Capabilities and Challenges [4.668749313973097]
This paper systematically evaluate Large Language Models (LLMs) and Large Reasoning Models (LRMs) across three levels of reasoning complexity.<n>We curate 26 challenges where models answer directly or by Python Code Interpreter.<n>LRMs show robust performance across tasks with various levels of difficulty, often competing or surpassing traditional first-principle-based methods.
arXiv Detail & Related papers (2025-05-16T18:32:35Z) - Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models [79.52467430114805]
Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains.<n>In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior.<n>Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities.
arXiv Detail & Related papers (2025-05-08T03:35:23Z) - Computational Reasoning of Large Language Models [51.629694188014064]
We introduce textbfTuring Machine Bench, a benchmark to assess the ability of Large Language Models (LLMs) to execute reasoning processes.<n> TMBench incorporates four key features: self-contained and knowledge-agnostic reasoning, a minimalistic multi-step structure, controllable difficulty, and a theoretical foundation based on Turing machine.
arXiv Detail & Related papers (2025-04-29T13:52:47Z) - Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models [21.579319926212296]
Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks.<n>They struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships.<n>We introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection.
arXiv Detail & Related papers (2025-04-07T16:51:45Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Limits of Deep Learning: Sequence Modeling through the Lens of Complexity Theory [15.24542569393982]
Despite their successes, deep learning models struggle with tasks requiring complex reasoning and function composition.<n>We present a theoretical and empirical investigation into the limitations of Structured State Space Models (SSMs) and Transformers in such tasks.<n>We highlight the need for innovative solutions to achieve reliable multi-step reasoning and compositional task-solving.
arXiv Detail & Related papers (2024-05-26T19:33:23Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
Large language models (LLMs) face a challenge when engaging in temporal reasoning.
We propose TempLogic, a novel framework designed specifically for temporal question-answering tasks.
arXiv Detail & Related papers (2023-05-24T10:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.