Reasoning Meets Personalization: Unleashing the Potential of Large Reasoning Model for Personalized Generation
- URL: http://arxiv.org/abs/2505.17571v1
- Date: Fri, 23 May 2025 07:30:13 GMT
- Title: Reasoning Meets Personalization: Unleashing the Potential of Large Reasoning Model for Personalized Generation
- Authors: Sichun Luo, Guanzhi Deng, Jian Xu, Xiaojie Zhang, Hanxu Hou, Linqi Song,
- Abstract summary: We present the first systematic evaluation of large reasoning models (LRMs) for personalization tasks.<n>Our analysis identifies three key limitations: divergent thinking, misalignment of response formats, and ineffective use of retrieved information.<n>We propose Reinforced Reasoning for Personalization (model), a novel framework that incorporates a hierarchical reasoning thought template to guide LRMs in generating structured outputs.
- Score: 21.89080753903469
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Personalization is a critical task in modern intelligent systems, with applications spanning diverse domains, including interactions with large language models (LLMs). Recent advances in reasoning capabilities have significantly enhanced LLMs, enabling unprecedented performance in tasks such as mathematics and coding. However, their potential for personalization tasks remains underexplored. In this paper, we present the first systematic evaluation of large reasoning models (LRMs) for personalization tasks. Surprisingly, despite generating more tokens, LRMs do not consistently outperform general-purpose LLMs, especially in retrieval-intensive scenarios where their advantages diminish. Our analysis identifies three key limitations: divergent thinking, misalignment of response formats, and ineffective use of retrieved information. To address these challenges, we propose Reinforced Reasoning for Personalization (\model), a novel framework that incorporates a hierarchical reasoning thought template to guide LRMs in generating structured outputs. Additionally, we introduce a reasoning process intervention method to enforce adherence to designed reasoning patterns, enhancing alignment. We also propose a cross-referencing mechanism to ensure consistency. Extensive experiments demonstrate that our approach significantly outperforms existing techniques.
Related papers
- Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - Beyond Templates: Dynamic Adaptation of Reasoning Demonstrations via Feasibility-Aware Exploration [15.711365331854614]
We introduce Dynamic Adaptation of Reasoning Trajectories (DART), a novel data adaptation framework.<n>Instead of uniformly imitating expert steps, DART employs a selective imitation strategy guided by step-wise adaptability estimation.<n>We validate DART across multiple reasoning benchmarks and model scales, demonstrating that it significantly improves generalization and data efficiency.
arXiv Detail & Related papers (2025-05-27T04:08:11Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
Large Language Models (LLMs) display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation.<n>RLMs often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting.<n>We introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs.
arXiv Detail & Related papers (2025-05-20T03:54:57Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
Recent advancements in Large Reasoning Models (LRMs) have demonstrated remarkable performance in specialized reasoning tasks.<n>We show that acquiring deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs.<n>We demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks.
arXiv Detail & Related papers (2025-03-23T08:18:51Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - VERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning [8.867818326729367]
We introduce VERUS-LM, a novel framework for neurosymbolic reasoning.<n> VERUS-LM employs a generic prompting mechanism, clearly separates domain knowledge from queries.<n>We show that our approach succeeds in diverse reasoning on a novel dataset, markedly outperforming LLMs.
arXiv Detail & Related papers (2025-01-24T14:45:21Z) - Reinforcing Thinking through Reasoning-Enhanced Reward Models [6.636512424910708]
Large Language Models (LLMs) exhibit great potential in complex multi-step reasoning through inference-time thinking.<n>LLMs struggle with deciding when to stop thinking due to limited self-awareness about their knowledge boundaries.<n>This work addresses these challenges by distilling the LLM's own reasoning processes into synthetic behavioral data.
arXiv Detail & Related papers (2024-12-31T04:50:15Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
We propose a framework that leverages a pretrained Large Language Model (LLM) in conjunction with an FEM module to autonomously generate, evaluate, and refine structural designs.<n>LLM operates without domain-specific fine-tuning, using general reasoning to propose design candidates, interpret FEM-derived performance metrics, and apply structurally sound modifications.<n>Compared to Non- Sorting Genetic Algorithm II (NSGA-II), our method achieves faster convergence and fewer FEM evaluations.
arXiv Detail & Related papers (2024-04-26T16:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.