MEL: Multi-level Ensemble Learning for Resource-Constrained Environments
- URL: http://arxiv.org/abs/2506.20094v1
- Date: Wed, 25 Jun 2025 02:33:57 GMT
- Title: MEL: Multi-level Ensemble Learning for Resource-Constrained Environments
- Authors: Krishna Praneet Gudipaty, Walid A. Hanafy, Kaan Ozkara, Qianlin Liang, Jesse Milzman, Prashant Shenoy, Suhas Diggavi,
- Abstract summary: We propose a new framework for resilient edge inference, Multi-Level Ensemble Learning (MEL)<n>MEL trains multiple lightweight backup models capable of operating collaboratively, refining each other when multiple servers are available, and independently under failures.<n> Empirical evaluations across vision, language, and audio datasets show that MEL provides performance comparable to original architectures.
- Score: 1.59297928921015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI inference at the edge is becoming increasingly common for low-latency services. However, edge environments are power- and resource-constrained, and susceptible to failures. Conventional failure resilience approaches, such as cloud failover or compressed backups, often compromise latency or accuracy, limiting their effectiveness for critical edge inference services. In this paper, we propose Multi-Level Ensemble Learning (MEL), a new framework for resilient edge inference that simultaneously trains multiple lightweight backup models capable of operating collaboratively, refining each other when multiple servers are available, and independently under failures while maintaining good accuracy. Specifically, we formulate our approach as a multi-objective optimization problem with a loss formulation that inherently encourages diversity among individual models to promote mutually refining representations, while ensuring each model maintains good standalone performance. Empirical evaluations across vision, language, and audio datasets show that MEL provides performance comparable to original architectures while also providing fault tolerance and deployment flexibility across edge platforms. Our results show that our ensemble model, sized at 40\% of the original model, achieves similar performance, while preserving 95.6\% of ensemble accuracy in the case of failures when trained using MEL.
Related papers
- Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models [7.566515311806724]
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information.<n>Existing unlearning methods formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss.<n>We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss.
arXiv Detail & Related papers (2025-06-05T17:55:23Z) - InvFussion: Bridging Supervised and Zero-shot Diffusion for Inverse Problems [76.39776789410088]
This work introduces a framework that combines the strong performance of supervised approaches and the flexibility of zero-shot methods.<n>A novel architectural design seamlessly integrates the degradation operator directly into the denoiser.<n> Experimental results on the FFHQ and ImageNet datasets demonstrate state-of-the-art posterior-sampling performance.
arXiv Detail & Related papers (2025-04-02T12:40:57Z) - Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients [60.22876915395139]
This paper studies a challenging robust federated learning task with model heterogeneous and data corrupted clients.<n>Data corruption is unavoidable due to factors such as random noise, compression artifacts, or environmental conditions in real-world deployment.<n>We propose a novel Robust Asymmetric Heterogeneous Federated Learning framework to address these issues.
arXiv Detail & Related papers (2025-03-12T09:52:04Z) - Feasible Learning [78.6167929413604]
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample.<n>Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
arXiv Detail & Related papers (2025-01-24T20:39:38Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.<n>FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.<n>We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality [69.76121008898677]
Fine-grained Selective Calibrated CLIP integrates local hard negative loss and selective calibrated regularization.
Our evaluations show that FSC-CLIP not only achieves compositionality on par with state-of-the-art models but also retains strong multi-modal capabilities.
arXiv Detail & Related papers (2024-10-07T17:16:20Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Dependable Distributed Training of Compressed Machine Learning Models [16.403297089086042]
We propose DepL, a framework for dependable learning orchestration.
It makes high-quality, efficient decisions on (i) the data to leverage for learning, (ii) the models to use and when to switch among them, and (iii) the clusters of nodes, and the resources thereof, to exploit.
We prove that DepL has constant competitive ratio and complexity, and show that it outperforms the state-of-the-art by over 27%.
arXiv Detail & Related papers (2024-02-22T07:24:26Z) - FedAA: A Reinforcement Learning Perspective on Adaptive Aggregation for Fair and Robust Federated Learning [5.622065847054885]
Federated Learning (FL) has emerged as a promising approach for privacy-preserving model training across decentralized devices.<n>We introduce a novel method called textbfFedAA, which optimize client contributions via textbfAdaptive textbfAggregation to enhance model robustness against malicious clients.
arXiv Detail & Related papers (2024-02-08T10:22:12Z) - Building Robust Ensembles via Margin Boosting [98.56381714748096]
In adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attacks.
We develop an algorithm for learning an ensemble with maximum margin.
We show that our algorithm not only outperforms existing ensembling techniques, but also large models trained in an end-to-end fashion.
arXiv Detail & Related papers (2022-06-07T14:55:58Z) - Fair and Consistent Federated Learning [48.19977689926562]
Federated learning (FL) has gain growing interests for its capability of learning from distributed data sources collectively.
We propose an FL framework to jointly consider performance consistency and algorithmic fairness across different local clients.
arXiv Detail & Related papers (2021-08-19T01:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.