SEED: A Structural Encoder for Embedding-Driven Decoding in Time Series Prediction with LLMs
- URL: http://arxiv.org/abs/2506.20167v1
- Date: Wed, 25 Jun 2025 06:40:14 GMT
- Title: SEED: A Structural Encoder for Embedding-Driven Decoding in Time Series Prediction with LLMs
- Authors: Fengze Li, Yue Wang, Yangle Liu, Ming Huang, Dou Hong, Jieming Ma,
- Abstract summary: We introduce SEED, a structural encoder for embedding-driven decoding, which integrates four stages: a token-aware encoder for patch extraction, a projection module that aligns patches with language model embeddings, and a semantic reprogramming mechanism that maps patches to task-aware prototypes.<n>This modular architecture decouples representation learning from inference, enabling efficient alignment between numerical patterns and semantic reasoning.
- Score: 3.036179638516407
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate time series forecasting requires models to simultaneously capture variable-wise structural dependencies and generalize across diverse tasks. While structural encoders are effective in modeling feature interactions, they lack the capacity to support semantic-level reasoning or task adaptation. Conversely, large language models (LLMs) possess strong generalization capabilities but remain incompatible with raw time series inputs. This gap limits the development of unified, transferable prediction systems. Therefore, we introduce SEED, a structural encoder for embedding-driven decoding, which integrates four stages: a token-aware encoder for patch extraction, a projection module that aligns patches with language model embeddings, a semantic reprogramming mechanism that maps patches to task-aware prototypes, and a frozen language model for prediction. This modular architecture decouples representation learning from inference, enabling efficient alignment between numerical patterns and semantic reasoning. Empirical results demonstrate that the proposed method achieves consistent improvements over strong baselines, and comparative studies on various datasets confirm SEED's role in addressing the structural-semantic modeling gap.
Related papers
- Temporal-Spectral-Spatial Unified Remote Sensing Dense Prediction [62.376936772702905]
Current deep learning architectures for remote sensing are fundamentally rigid.<n>We introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling.<n> STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands.<n>It unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings.
arXiv Detail & Related papers (2025-05-18T07:39:17Z) - LLM4FTS: Enhancing Large Language Models for Financial Time Series Prediction [0.0]
Traditional machine learning models exhibit limitations in this forecasting task constrained by their restricted model capacity.<n>We propose $LLM4FTS$, a novel framework that enhances temporal sequence modeling through learnable patch segmentation and dynamic wavelet convolution modules.<n>Experiments on real-world financial datasets substantiate the framework's efficacy, demonstrating superior performance in capturing complex market patterns and achieving state-of-the-art results in stock return prediction.
arXiv Detail & Related papers (2025-05-05T06:48:34Z) - Latent Thought Models with Variational Bayes Inference-Time Computation [52.63299874322121]
Latent Thought Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.<n>LTMs demonstrate superior sample and parameter efficiency compared to autoregressive models and discrete diffusion models.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP) is a methodology designed to analyse how large language models process linguistic structures.<n>CAP intervenes in model activations through constituent-based pooling at various model levels.<n>Our findings highlight fundamental limitations in current transformer architectures regarding compositional semantics processing and model interpretability.
arXiv Detail & Related papers (2024-10-16T18:10:50Z) - Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational
AutoEncoders [5.037881619912574]
In this paper, we investigate latent space separation methods for structural syntactic injection in Transformer-based VAEs.
Specifically, we explore how syntactic structures can be leveraged in the encoding stage through the integration of graph-based and sequential models.
Our empirical evaluation, carried out on natural language sentences and mathematical expressions, reveals that the proposed end-to-end VAE architecture can result in a better overall organisation of the latent space.
arXiv Detail & Related papers (2023-11-14T22:47:23Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - Examining Scaling and Transfer of Language Model Architectures for
Machine Translation [51.69212730675345]
Language models (LMs) process sequences in a single stack of layers, and encoder-decoder models (EncDec) utilize separate layer stacks for input and output processing.
In machine translation, EncDec has long been the favoured approach, but with few studies investigating the performance of LMs.
arXiv Detail & Related papers (2022-02-01T16:20:15Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.