Progressive Alignment Degradation Learning for Pansharpening
- URL: http://arxiv.org/abs/2506.20179v1
- Date: Wed, 25 Jun 2025 07:07:32 GMT
- Title: Progressive Alignment Degradation Learning for Pansharpening
- Authors: Enzhe Zhao, Zhichang Guo, Yao Li, Fanghui Song, Boying Wu,
- Abstract summary: Deep learning-based pansharpening has been shown to effectively generate high-resolution multispectral (HRMS) images.<n>The Wald protocol assumes that networks trained on artificial low-resolution data will perform equally well on high-resolution data.<n>We proposePADM, which uses mutual iteration between two sub-networks, PAlignNet and PDegradeNet, to adaptively learn accurate degradation processes.
- Score: 3.7939736380306552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based pansharpening has been shown to effectively generate high-resolution multispectral (HRMS) images. To create supervised ground-truth HRMS images, synthetic data generated using the Wald protocol is commonly employed. This protocol assumes that networks trained on artificial low-resolution data will perform equally well on high-resolution data. However, well-trained models typically exhibit a trade-off in performance between reduced-resolution and full-resolution datasets. In this paper, we delve into the Wald protocol and find that its inaccurate approximation of real-world degradation patterns limits the generalization of deep pansharpening models. To address this issue, we propose the Progressive Alignment Degradation Module (PADM), which uses mutual iteration between two sub-networks, PAlignNet and PDegradeNet, to adaptively learn accurate degradation processes without relying on predefined operators. Building on this, we introduce HFreqdiff, which embeds high-frequency details into a diffusion framework and incorporates CFB and BACM modules for frequency-selective detail extraction and precise reverse process learning. These innovations enable effective integration of high-resolution panchromatic and multispectral images, significantly enhancing spatial sharpness and quality. Experiments and ablation studies demonstrate the proposed method's superior performance compared to state-of-the-art techniques.
Related papers
- APT: Improving Diffusion Models for High Resolution Image Generation with Adaptive Path Tracing [24.33819371470651]
Latent Diffusion Models (LDMs) are generally trained at fixed resolutions, limiting their capability when scaling to high-resolution images.<n>We propose Adaptive Path Tracing (APT), a framework that combines Statistical Matching to ensure patch distributions remain consistent.<n>As a result, APT produces clearer and more refined details in high-resolution images.
arXiv Detail & Related papers (2025-07-29T11:13:03Z) - Enhanced Semantic Extraction and Guidance for UGC Image Super Resolution [18.058473238611725]
We propose a novel approach to image super-resolution by integrating semantic guidance into a diffusion framework.<n>Our method addresses the inconsistency between degradations in wild and synthetic datasets.<n>Our model won second place in the CVIRE 2025 Short-form Image Super-Resolution Challenge.
arXiv Detail & Related papers (2025-04-14T05:26:24Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Pairwise Distance Distillation for Unsupervised Real-World Image Super-Resolution [38.79439380482431]
Real-world super-resolution (RWSR) faces unknown degradations in the low-resolution inputs, all the while lacking paired training data.
Existing methods approach this problem by learning blind general models through complex synthetic augmentations on training inputs.
We introduce a novel pairwise distance distillation framework to address the unsupervised RWSR for a targeted real-world degradation.
arXiv Detail & Related papers (2024-07-10T01:46:40Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data.
We propose a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process.
arXiv Detail & Related papers (2023-07-27T07:22:51Z) - Unsupervised Deep Learning-based Pansharpening with Jointly-Enhanced
Spectral and Spatial Fidelity [4.425982186154401]
We propose a new deep learning-based pansharpening model that fully exploits the potential of this approach.
The proposed model features a novel loss function that jointly promotes the spectral and spatial quality of the pansharpened data.
Experiments on a large variety of test images, performed in challenging scenarios, demonstrate that the proposed method compares favorably with the state of the art.
arXiv Detail & Related papers (2023-07-26T17:25:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
We consider the single image super-resolution (SISR) problem, where a high-resolution (HR) image is generated based on a low-resolution (LR) input.
Most methods along this line rely on a predefined single-LR-single-HR mapping, which is not flexible enough for the SISR task.
We propose best-buddy GANs (Beby-GAN) for rich-detail SISR. Relaxing the immutable one-to-one constraint, we allow the estimated patches to dynamically seek the best supervision.
arXiv Detail & Related papers (2021-03-29T02:58:27Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.