Intrinsic vs. Extrinsic Evaluation of Czech Sentence Embeddings: Semantic Relevance Doesn't Help with MT Evaluation
- URL: http://arxiv.org/abs/2506.20203v1
- Date: Wed, 25 Jun 2025 07:46:17 GMT
- Title: Intrinsic vs. Extrinsic Evaluation of Czech Sentence Embeddings: Semantic Relevance Doesn't Help with MT Evaluation
- Authors: Petra Barančíková, Ondřej Bojar,
- Abstract summary: In this paper, we compare Czech-specific and multilingual sentence embedding models through intrinsic and extrinsic evaluation paradigms.<n>For intrinsic evaluation, we employ Costra, a complex sentence transformation dataset, and several Semantic Textual Similarity (STS) benchmarks to assess the ability of the embeddings to capture linguistic phenomena.<n>In the extrinsic evaluation, we fine-tune each embedding model using COMET-based metrics for machine translation evaluation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we compare Czech-specific and multilingual sentence embedding models through intrinsic and extrinsic evaluation paradigms. For intrinsic evaluation, we employ Costra, a complex sentence transformation dataset, and several Semantic Textual Similarity (STS) benchmarks to assess the ability of the embeddings to capture linguistic phenomena such as semantic similarity, temporal aspects, and stylistic variations. In the extrinsic evaluation, we fine-tune each embedding model using COMET-based metrics for machine translation evaluation. Our experiments reveal an interesting disconnect: models that excel in intrinsic semantic similarity tests do not consistently yield superior performance on downstream translation evaluation tasks. Conversely, models with seemingly over-smoothed embedding spaces can, through fine-tuning, achieve excellent results. These findings highlight the complex relationship between semantic property probes and downstream task, emphasizing the need for more research into 'operationalizable semantics' in sentence embeddings, or more in-depth downstream tasks datasets (here translation evaluation)
Related papers
- Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective [50.261681681643076]
We propose a novel metric called SemVarEffect and a benchmark named SemVarBench to evaluate the causality between semantic variations in inputs and outputs in text-to-image synthesis.<n>Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding.
arXiv Detail & Related papers (2024-10-14T08:45:35Z) - Using Similarity to Evaluate Factual Consistency in Summaries [2.7595794227140056]
Abstractive summarisers generate fluent summaries, but the factuality of the generated text is not guaranteed.
We propose a new zero-shot factuality evaluation metric, Sentence-BERTScore (SBERTScore), which compares sentences between the summary and the source document.
Our experiments indicate that each technique has different strengths, with SBERTScore particularly effective in identifying correct summaries.
arXiv Detail & Related papers (2024-09-23T15:02:38Z) - MINERS: Multilingual Language Models as Semantic Retrievers [23.686762008696547]
This paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual language models in semantic retrieval tasks.
We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages.
Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches.
arXiv Detail & Related papers (2024-06-11T16:26:18Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - Language model acceptability judgements are not always robust to context [30.868765627701457]
We investigate the stability of language models' performance on targeted syntactic evaluations.
We find that model judgements are generally robust when placed in randomly sampled linguistic contexts.
We show that these changes in model performance are not explainable by simple features matching the context and the test inputs.
arXiv Detail & Related papers (2022-12-18T00:11:06Z) - Retrofitting Multilingual Sentence Embeddings with Abstract Meaning
Representation [70.58243648754507]
We introduce a new method to improve existing multilingual sentence embeddings with Abstract Meaning Representation (AMR)
Compared with the original textual input, AMR is a structured semantic representation that presents the core concepts and relations in a sentence explicitly and unambiguously.
Experiment results show that retrofitting multilingual sentence embeddings with AMR leads to better state-of-the-art performance on both semantic similarity and transfer tasks.
arXiv Detail & Related papers (2022-10-18T11:37:36Z) - Just Rank: Rethinking Evaluation with Word and Sentence Similarities [105.5541653811528]
intrinsic evaluation for embeddings lags far behind, and there has been no significant update since the past decade.
This paper first points out the problems using semantic similarity as the gold standard for word and sentence embedding evaluations.
We propose a new intrinsic evaluation method called EvalRank, which shows a much stronger correlation with downstream tasks.
arXiv Detail & Related papers (2022-03-05T08:40:05Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) were tested on a benchmark for the textitdynamic estimation of thematic fit
Our results show that TLMs can reach performances that are comparable to those achieved by SDM.
However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge.
arXiv Detail & Related papers (2021-07-22T20:52:26Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - Comparative analysis of word embeddings in assessing semantic similarity
of complex sentences [8.873705500708196]
We study the sentences in existing benchmark datasets and analyze the sensitivity of various word embeddings with respect to the complexity of the sentences.
The results show the increase in complexity of the sentences has a significant impact on the performance of the embedding models.
arXiv Detail & Related papers (2020-10-23T19:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.