Directed Link Prediction using GNN with Local and Global Feature Fusion
- URL: http://arxiv.org/abs/2506.20235v1
- Date: Wed, 25 Jun 2025 08:25:56 GMT
- Title: Directed Link Prediction using GNN with Local and Global Feature Fusion
- Authors: Yuyang Zhang, Xu Shen, Yu Xie, Ka-Chun Wong, Weidun Xie, Chengbin Peng,
- Abstract summary: Link prediction is a classical problem in graph analysis with many practical applications.<n>We propose a novel graph neural network (GNN) framework to fuse feature embedding with community information.<n>Our approach outperforms the state-of-the-art in most cases when 30%, 40%, 50%, and 60% of the connected links are used as training data.
- Score: 20.470116080519585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction is a classical problem in graph analysis with many practical applications. For directed graphs, recently developed deep learning approaches typically analyze node similarities through contrastive learning and aggregate neighborhood information through graph convolutions. In this work, we propose a novel graph neural network (GNN) framework to fuse feature embedding with community information. We theoretically demonstrate that such hybrid features can improve the performance of directed link prediction. To utilize such features efficiently, we also propose an approach to transform input graphs into directed line graphs so that nodes in the transformed graph can aggregate more information during graph convolutions. Experiments on benchmark datasets show that our approach outperforms the state-of-the-art in most cases when 30%, 40%, 50%, and 60% of the connected links are used as training data, respectively.
Related papers
- GALA: Graph Diffusion-based Alignment with Jigsaw for Source-free Domain Adaptation [13.317620250521124]
Source-free domain adaptation is a crucial machine learning topic, as it contains numerous applications in the real world.
Recent graph neural network (GNN) approaches can suffer from serious performance decline due to domain shift and label scarcity.
We propose a novel method named Graph Diffusion-based Alignment with Jigsaw (GALA), tailored for source-free graph domain adaptation.
arXiv Detail & Related papers (2024-10-22T01:32:46Z) - Graph Coarsening via Convolution Matching for Scalable Graph Neural
Network Training [22.411609128594982]
We propose the Coarsening Via Convolution Matching (CONVMATCH) algorithm and a highly scalable variant, A-CONVMATCH, for creating summarized graphs.
We evaluate CONVMATCH on six real-world link prediction and node classification graph datasets.
arXiv Detail & Related papers (2023-12-24T16:07:14Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - How Neural Processes Improve Graph Link Prediction [35.652234989200956]
We propose a meta-learning approach with graph neural networks for link prediction: Neural Processes for Graph Neural Networks (NPGNN)
NPGNN can perform both transductive and inductive learning tasks and adapt to patterns in a large new graph after training with a small subgraph.
arXiv Detail & Related papers (2021-09-30T07:35:13Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.