Enhancing Large Language Models through Structured Reasoning
- URL: http://arxiv.org/abs/2506.20241v1
- Date: Wed, 25 Jun 2025 08:36:12 GMT
- Title: Enhancing Large Language Models through Structured Reasoning
- Authors: Yubo Dong, Hehe Fan,
- Abstract summary: We introduce a novel approach to enhance Large Language Models (LLMs) through explicit structured reasoning.<n>First, we convert unstructured data into structured formats by explicitly annotating reasoning steps.<n>We then employ this structured dataset to train LLMs through Supervised Fine-Tuning (SFT)
- Score: 15.472375478049823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Large Language Models (LLMs) have significantly advanced natural language processing and automated decision-making. However, these models still encounter difficulties when performing complex reasoning tasks involving logical deduction and systematic planning, primarily due to their reliance on implicit statistical relationships without structured knowledge representation.Inspired by cognitive science and neurosymbolic AI, we introduce a novel approach to enhance LLMs through explicit structured reasoning. First, we convert unstructured data into structured formats by explicitly annotating reasoning steps. We then employ this structured dataset to train LLMs through Supervised Fine-Tuning (SFT). Additionally, we enhance the structured reasoning capabilities of LLMs using Group Relative Policy Optimization (GRPO), incorporating two innovative algorithms--MAX-Flow and Longest Common Subsequence (LCS)--which notably improve reasoning effectiveness and reduce computational complexity. Experimental results from fine-tuning a DeepSeek-R1-Distill-Qwen-1.5B model demonstrate concise reasoning, robust performance across various scenarios, and improved compatibility with optimization techniques, validating the efficacy of structured reasoning integration in LLMs.
Related papers
- PLAN-TUNING: Post-Training Language Models to Learn Step-by-Step Planning for Complex Problem Solving [66.42260489147617]
We introduce PLAN-TUNING, a framework that distills synthetic task decompositions from large-scale language models.<n>Plan-TUNING fine-tunes smaller models via supervised and reinforcement-learning objectives to improve complex reasoning.<n>Our analysis demonstrates how planning trajectories improves complex reasoning capabilities.
arXiv Detail & Related papers (2025-07-10T07:30:44Z) - Do LLMs Dream of Discrete Algorithms? [0.7646713951724011]
Large Language Models (LLMs) have rapidly transformed the landscape of artificial intelligence.<n>Their reliance on probabilistic inference limits their effectiveness in domains requiring strict logical reasoning.<n>This paper proposes a neurosymbolic approach that augments LLMs with logic-based reasoning modules.
arXiv Detail & Related papers (2025-06-29T22:03:01Z) - Large Language Models for Design Structure Matrix Optimization [4.513609458468522]
In complex engineering systems, the interdependencies among components or development activities are often modeled and analyzed using Design Structure Matrix (DSM)<n>Reorganizing elements within a DSM to minimize feedback loops and enhance modularity or process efficiency constitutes a challenging optimization problem in engineering design and operations.<n>In this study, we explore the potential of Large Language Models (LLMs) for helping solve such CO problems by leveraging their capabilities for advanced reasoning and contextual understanding.
arXiv Detail & Related papers (2025-06-11T13:53:35Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training [66.48331530995786]
We propose syMmetry-ENhanceD (MEND) Data Augmentation, a data-centric approach that improves the model's ability to extract useful information from context.<n>Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage.<n>Experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations.
arXiv Detail & Related papers (2025-02-25T03:03:35Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
Existing approaches to mathematical reasoning with large language models rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.<n>We propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously.
arXiv Detail & Related papers (2025-02-17T16:56:23Z) - Can Large Language Models Be Trusted as Evolutionary Optimizers for Network-Structured Combinatorial Problems? [8.082897040940447]
Large Language Models (LLMs) have shown strong capabilities in language understanding and reasoning across diverse domains.<n>In this work, we propose a systematic framework to evaluate the capability of LLMs to engage with problem structures.<n>We adopt the commonly used evolutionary (EVO) and propose a comprehensive evaluation framework that rigorously assesses the output fidelity of LLM-based operators.
arXiv Detail & Related papers (2025-01-25T05:19:19Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)<n>FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.<n>FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [37.430396755248104]
We propose the Deductive and InDuctive(DID) method to enhance Large Language Models (LLMs) reasoning.<n>DID implements a dual-metric complexity evaluation system that combines Littlestone dimension and information entropy.<n>Our results demonstrate significant improvements in reasoning quality and solution accuracy.
arXiv Detail & Related papers (2024-10-03T18:30:47Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.<n>Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - Inductive Learning of Logical Theories with LLMs: An Expressivity-Graded Analysis [9.865771016218549]
This work presents a novel systematic methodology to analyse the capabilities and limitations of Large Language Models (LLMs)<n>The analysis is complexity-graded w.r.t. rule dependency structure, allowing quantification of specific inference challenges on LLM performance.
arXiv Detail & Related papers (2024-08-15T16:41:00Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks.
We propose a hierarchical generation scheme to encourage a more structural generation of chain-of-thought steps.
Our approach requires a negligible increase in trainable parameters (0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme.
arXiv Detail & Related papers (2023-10-09T13:29:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.