PLAN-TUNING: Post-Training Language Models to Learn Step-by-Step Planning for Complex Problem Solving
- URL: http://arxiv.org/abs/2507.07495v1
- Date: Thu, 10 Jul 2025 07:30:44 GMT
- Title: PLAN-TUNING: Post-Training Language Models to Learn Step-by-Step Planning for Complex Problem Solving
- Authors: Mihir Parmar, Palash Goyal, Xin Liu, Yiwen Song, Mingyang Ling, Chitta Baral, Hamid Palangi, Tomas Pfister,
- Abstract summary: We introduce PLAN-TUNING, a framework that distills synthetic task decompositions from large-scale language models.<n>Plan-TUNING fine-tunes smaller models via supervised and reinforcement-learning objectives to improve complex reasoning.<n>Our analysis demonstrates how planning trajectories improves complex reasoning capabilities.
- Score: 66.42260489147617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, decomposing complex problems into simple subtasks--a crucial part of human-like natural planning--to solve the given problem has significantly boosted the performance of large language models (LLMs). However, leveraging such planning structures during post-training to boost the performance of smaller open-source LLMs remains underexplored. Motivated by this, we introduce PLAN-TUNING, a unified post-training framework that (i) distills synthetic task decompositions (termed "planning trajectories") from large-scale LLMs and (ii) fine-tunes smaller models via supervised and reinforcement-learning objectives designed to mimic these planning processes to improve complex reasoning. On GSM8k and the MATH benchmarks, plan-tuned models outperform strong baselines by an average $\sim7\%$. Furthermore, plan-tuned models show better generalization capabilities on out-of-domain datasets, with average $\sim10\%$ and $\sim12\%$ performance improvements on OlympiadBench and AIME 2024, respectively. Our detailed analysis demonstrates how planning trajectories improves complex reasoning capabilities, showing that PLAN-TUNING is an effective strategy for improving task-specific performance of smaller LLMs.
Related papers
- CRISP: Complex Reasoning with Interpretable Step-based Plans [15.656686375199921]
We introduce CRISP (Complex Reasoning with Interpretable Step-based Plans), a dataset of high-level plans for mathematical reasoning and code generation.<n>We demonstrate that fine-tuning a small model on CRISP enables it to generate higher-quality plans than much larger models using few-shot prompting.
arXiv Detail & Related papers (2025-07-09T11:40:24Z) - HyperTree Planning: Enhancing LLM Reasoning via Hierarchical Thinking [109.09735490692202]
We propose HyperTree Planning (HTP), a novel reasoning paradigm that constructs hypertree-structured planning outlines for effective planning.<n> Experiments demonstrate the effectiveness of HTP, achieving state-of-the-art accuracy on the TravelPlanner benchmark with Gemini-1.5-Pro, resulting in a 3.6 times performance improvement over o1-preview.
arXiv Detail & Related papers (2025-05-05T02:38:58Z) - Non-myopic Generation of Language Models for Reasoning and Planning [45.75146679449453]
This paper proposes a novel method, Predictive-Decoding, that leverages Model Predictive Control to enhance planning accuracy.
Our experiments show significant improvements in a wide range of tasks for math, coding, and agents.
arXiv Detail & Related papers (2024-10-22T17:13:38Z) - On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability [59.72892401927283]
We evaluate the planning capabilities of OpenAI's o1 models across a variety of benchmark tasks.
Our results reveal that o1-preview outperforms GPT-4 in adhering to task constraints.
arXiv Detail & Related papers (2024-09-30T03:58:43Z) - CPL: Critical Plan Step Learning Boosts LLM Generalization in Reasoning Tasks [2.9449838351181374]
Post-training, particularly reinforcement learning, has become a new learning paradigm for large language models (LLMs)
We propose searching within the action space on high-level abstract plans to enhance model generalization.
We show that our method, trained exclusively on GSM8K and MATH, significantly improves performance.
arXiv Detail & Related papers (2024-09-13T08:59:31Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
Large language models (LLMs) often struggle with tasks that require multi-step reasoning or goal-directed planning.
We propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of specialized modules.
We find that MAP yields significant improvements over both standard LLM methods.
arXiv Detail & Related papers (2023-09-30T00:10:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.