A Novel Large Vision Foundation Model (LVFM)-based Approach for Generating High-Resolution Canopy Height Maps in Plantations for Precision Forestry Management
- URL: http://arxiv.org/abs/2506.20388v1
- Date: Wed, 25 Jun 2025 12:51:49 GMT
- Title: A Novel Large Vision Foundation Model (LVFM)-based Approach for Generating High-Resolution Canopy Height Maps in Plantations for Precision Forestry Management
- Authors: Shen Tan, Xin Zhang, Liangxiu Han, Huaguo Huang, Han Wang,
- Abstract summary: High-resolution canopy height maps (CHMs) are essential for monitoring plantation aboveground biomass (AGB)<n>We developed a novel model for high-resolution CHM generation using a Large Vision Foundation Model (LVFM)<n>Tested in Beijing's Fangshan District using 1-meter Google Earth imagery, our model outperformed existing methods.
- Score: 6.293696981925574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate, cost-effective monitoring of plantation aboveground biomass (AGB) is crucial for supporting local livelihoods and carbon sequestration initiatives like the China Certified Emission Reduction (CCER) program. High-resolution canopy height maps (CHMs) are essential for this, but standard lidar-based methods are expensive. While deep learning with RGB imagery offers an alternative, accurately extracting canopy height features remains challenging. To address this, we developed a novel model for high-resolution CHM generation using a Large Vision Foundation Model (LVFM). Our model integrates a feature extractor, a self-supervised feature enhancement module to preserve spatial details, and a height estimator. Tested in Beijing's Fangshan District using 1-meter Google Earth imagery, our model outperformed existing methods, including conventional CNNs. It achieved a mean absolute error of 0.09 m, a root mean square error of 0.24 m, and a correlation of 0.78 against lidar-based CHMs. The resulting CHMs enabled over 90% success in individual tree detection, high accuracy in AGB estimation, and effective tracking of plantation growth, demonstrating strong generalization to non-training areas. This approach presents a promising, scalable tool for evaluating carbon sequestration in both plantations and natural forests.
Related papers
- Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
Urban forests play a key role in enhancing environmental quality and supporting biodiversity in cities.<n> accurately detecting trees is challenging due to complex landscapes and the variability in image resolution caused by different satellite sensors or UAV flight altitudes.<n>We propose a novel pipeline that integrates domain adaptation with GANs and Diffusion models to enhance the quality of low-resolution aerial images.
arXiv Detail & Related papers (2025-05-21T03:57:10Z) - Estimating the Diameter at Breast Height of Trees in a Forest With a Single 360 Camera [52.85399274741336]
Forest inventories rely on accurate measurements of the diameter at breast height (DBH) for ecological monitoring, resource management, and carbon accounting.<n>While LiDAR-based techniques can achieve centimeter-level precision, they are cost-prohibitive and operationally complex.<n>We present a low-cost alternative that only needs a consumer-grade 360 video camera.
arXiv Detail & Related papers (2025-05-06T01:09:07Z) - A method for estimating forest carbon storage distribution density via artificial intelligence generated content model [0.0]
We took GF-1 WFV satellite image as the data, introduced the KD-VGG module to extract the initial features, and proposed the improved implicit diffusion model (IIDM)<n>The IIDM model proposed in this paper had the highest estimation accuracy, with RMSE of 28.68, which was 13.16 higher than that of the regression model, about 31.45%.<n>In the estimation of carbon storage, the generative model can extract deeper features, and its performance was significantly better than other models.
arXiv Detail & Related papers (2025-02-02T12:41:47Z) - Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery [0.0]
This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery.<n>The VGG module improved initial feature extraction, improving accuracy, reducing inference time with optimized model parameters.<n>The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17%.
arXiv Detail & Related papers (2024-11-27T01:06:05Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Depth Any Canopy: Leveraging Depth Foundation Models for Canopy Height Estimation [4.69726714177332]
Estimating global tree canopy height is crucial for forest conservation and climate change applications.
An efficient alternative is to train a canopy height estimator to operate on single-view remotely sensed imagery.
Recent monocular depth estimation foundation models have show strong zero-shot performance even for complex scenes.
arXiv Detail & Related papers (2024-08-08T15:24:07Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
We present a new vision transformer (ViT) model optimized with a classification (discrete) and a continuous loss function.
This model achieves better accuracy than previously used convolutional based approaches (ConvNets) optimized with only a continuous loss function.
arXiv Detail & Related papers (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions.
The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020.
We also introduce a post-processing step using a convolutional network trained on GEDI observations.
arXiv Detail & Related papers (2023-04-14T15:52:57Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Information fusion approach for biomass estimation in a plateau
mountainous forest using a synergistic system comprising UAS-based digital
camera and LiDAR [9.944631732226657]
The objective of this study was to quantify the aboveground biomass (AGB) of a plateau mountainous forest reserve.
We utilized digital aerial photogrammetry (DAP), which has the unique advantages of speed, high spatial resolution, and low cost.
Based on the CHM and spectral attributes obtained from multispectral images, we estimated and mapped the AGB of the region of interest with considerable cost efficiency.
arXiv Detail & Related papers (2022-04-14T04:04:59Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.