A method for estimating forest carbon storage distribution density via artificial intelligence generated content model
- URL: http://arxiv.org/abs/2502.00783v1
- Date: Sun, 02 Feb 2025 12:41:47 GMT
- Title: A method for estimating forest carbon storage distribution density via artificial intelligence generated content model
- Authors: Zhenyu Yu, Jinnian Wang,
- Abstract summary: We took GF-1 WFV satellite image as the data, introduced the KD-VGG module to extract the initial features, and proposed the improved implicit diffusion model (IIDM)
The IIDM model proposed in this paper had the highest estimation accuracy, with RMSE of 28.68, which was 13.16 higher than that of the regression model, about 31.45%.
In the estimation of carbon storage, the generative model can extract deeper features, and its performance was significantly better than other models.
- Score: 0.0
- License:
- Abstract: Forest is the most significant land-based carbon storage mechanism. The forest carbon sink can effectively decrease the atmospheric CO2 concentration and mitigate climate change. Remote sensing estimation not only ensures high accuracy of data, but also enables large-scale area observation. Optical images provide the possibility for long-term monitoring, which is a potential issue in the future carbon storage estimation research. We chose Huize County, Qujing City, Yunnan Province, China as the study area, took GF-1 WFV satellite image as the data, introduced the KD-VGG module to extract the initial features, and proposed the improved implicit diffusion model (IIDM). The results showed that: (1) The VGG-19 module after knowledge distillation can realize the initial feature extraction, reduce the inference time and improve the accuracy in the case of reducing the number of model parameters. (2) The Attention + MLP module was added for feature fusion to obtain the relationship between global and local features and realized the restoration of high-fidelity images in the continuous scale range. (3) The IIDM model proposed in this paper had the highest estimation accuracy, with RMSE of 28.68, which was 13.16 higher than that of the regression model, about 31.45%. In the estimation of carbon storage, the generative model can extract deeper features, and its performance was significantly better than other models. It demonstrated the feasibility of artificial intelligence-generated content (AIGC) in the field of quantitative remote sensing and provided valuable insights for the study of carbon neutralization effect. By combining the actual characteristics of the forest, the regional carbon storage estimation with a resolution of 16-meter was utilized to provide a significant theoretical basis for the formulation of forest carbon sink regulation.
Related papers
- Estimating forest carbon stocks from high-resolution remote sensing imagery by reducing domain shift with style transfer [0.0]
Forests function as crucial carbon reservoirs on land, and their carbon sinks can efficiently reduce atmospheric CO2 concentrations and mitigate climate change.
Currently, the overall trend for monitoring and assessing forest carbon stocks is to integrate ground monitoring sample data with satellite remote sensing imagery.
We used GF-1 WFV and Landsat TM images to analyze Huize County, Qujing City, Yunnan Province in China.
arXiv Detail & Related papers (2025-02-02T12:45:46Z) - Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery [0.0]
This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery.
The VGG module improved initial feature extraction, improving accuracy reducing inference time with optimized parameters.
The IIDM model demonstrated the highest estimation accuracy with an RMSE of 12.17%, significantly improving by 41.69% to 42.33% compared to the regression model.
arXiv Detail & Related papers (2024-11-27T01:06:05Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling [9.05128569357374]
We present CarbonSense, the first machine learning-ready dataset for data-driven carbon flux modelling.
Our experiments illustrate the potential gains that multimodal deep learning techniques can bring to this domain.
arXiv Detail & Related papers (2024-06-07T13:47:40Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
We present a new vision transformer (ViT) model optimized with a classification (discrete) and a continuous loss function.
This model achieves better accuracy than previously used convolutional based approaches (ConvNets) optimized with only a continuous loss function.
arXiv Detail & Related papers (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions.
The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020.
We also introduce a post-processing step using a convolutional network trained on GEDI observations.
arXiv Detail & Related papers (2023-04-14T15:52:57Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
Machine learning offers a promising method for reducing the time and resource burdens of materials development.
We have developed an end-to-end "discovery cycle" to select new aqueous amines compatible with the commercially viable acid gas scrubbing carbon capture.
The prediction process shows 60% accuracy against experiment for both material parameters and 80% for a single parameter on an external test set.
arXiv Detail & Related papers (2023-03-24T18:32:38Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Tackling the Overestimation of Forest Carbon with Deep Learning and
Aerial Imagery [13.97765383479824]
This proposal paper describes the first systematic comparison of forest carbon estimation from aerial imagery, satellite imagery, and ground-truth field measurements.
Aerial imagery is significantly more expensive to collect and it is unclear by how much the higher resolution improves the forest carbon estimation.
Our initial results show that forest carbon estimates from satellite imagery can overestimate above-ground biomass by more than 10-times for tropical reforestation projects.
arXiv Detail & Related papers (2021-07-23T15:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.