POLAR: A Pessimistic Model-based Policy Learning Algorithm for Dynamic Treatment Regimes
- URL: http://arxiv.org/abs/2506.20406v1
- Date: Wed, 25 Jun 2025 13:22:57 GMT
- Title: POLAR: A Pessimistic Model-based Policy Learning Algorithm for Dynamic Treatment Regimes
- Authors: Ruijia Zhang, Zhengling Qi, Yue Wu, Xiangyu Zhang, Yanxun Xu,
- Abstract summary: We propose POLAR, a pessimistic model-based policy learning algorithm for offline dynamic treatment regimes (DTRs)<n> POLAR estimates the transition dynamics from offline data and quantifies uncertainty for each history-action pair.<n>Unlike many existing methods that focus on average training performance, POLAR directly targets the suboptimality of the final learned policy and offers theoretical guarantees.<n> Empirical results on both synthetic data and the MIMIC-III dataset demonstrate that POLAR outperforms state-of-the-art methods and yields near-optimal, history-aware treatment strategies.
- Score: 15.681058679765277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic treatment regimes (DTRs) provide a principled framework for optimizing sequential decision-making in domains where decisions must adapt over time in response to individual trajectories, such as healthcare, education, and digital interventions. However, existing statistical methods often rely on strong positivity assumptions and lack robustness under partial data coverage, while offline reinforcement learning approaches typically focus on average training performance, lack statistical guarantees, and require solving complex optimization problems. To address these challenges, we propose POLAR, a novel pessimistic model-based policy learning algorithm for offline DTR optimization. POLAR estimates the transition dynamics from offline data and quantifies uncertainty for each history-action pair. A pessimistic penalty is then incorporated into the reward function to discourage actions with high uncertainty. Unlike many existing methods that focus on average training performance, POLAR directly targets the suboptimality of the final learned policy and offers theoretical guarantees, without relying on computationally intensive minimax or constrained optimization procedures. To the best of our knowledge, POLAR is the first model-based DTR method to provide both statistical and computational guarantees, including finite-sample bounds on policy suboptimality. Empirical results on both synthetic data and the MIMIC-III dataset demonstrate that POLAR outperforms state-of-the-art methods and yields near-optimal, history-aware treatment strategies.
Related papers
- EXPO: Stable Reinforcement Learning with Expressive Policies [74.30151915786233]
We propose a sample-efficient online reinforcement learning algorithm to maximize value with two parameterized policies.<n>Our approach yields up to 2-3x improvement in sample efficiency on average over prior methods.
arXiv Detail & Related papers (2025-07-10T17:57:46Z) - KIPPO: Koopman-Inspired Proximal Policy Optimization [4.46358470535211]
Reinforcement Learning (RL) has made significant strides in various domains.<n>Policy gradient methods like Proximal Policy (PPO) have gained popularity due to their balance in performance, stability, and computational efficiency.
arXiv Detail & Related papers (2025-05-20T16:25:41Z) - Reinforcement Learning for Individual Optimal Policy from Heterogeneous Data [3.6714630660726586]
offline reinforcement learning (RL) aims to find optimal policies in dynamic environments in order to maximize the expected total rewards by leveraging pre-collected data.<n>Traditional methods focus on learning an optimal policy for all individuals with pre-collected data from a single episode or homogeneous batch episodes.<n>We propose an individualized offline policy optimization framework for heterogeneous time-stationary Markov decision processes.
arXiv Detail & Related papers (2025-05-14T15:44:10Z) - Model-Based Offline Reinforcement Learning with Adversarial Data Augmentation [36.9134885948595]
We introduce Model-based Offline Reinforcement learning with AdversariaL data augmentation.<n>In MORAL, we replace the fixed horizon rollout by employing adversaria data augmentation to execute alternating sampling with ensemble models.<n>Experiments on D4RL benchmark demonstrate that MORAL outperforms other model-based offline RL methods in terms of policy learning and sample efficiency.
arXiv Detail & Related papers (2025-03-26T07:24:34Z) - Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.<n>We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Model-Based Offline Reinforcement Learning with Pessimism-Modulated
Dynamics Belief [3.0036519884678894]
Model-based offline reinforcement learning (RL) aims to find highly rewarding policy, by leveraging a previously collected static dataset and a dynamics model.
In this work, we maintain a belief distribution over dynamics, and evaluate/optimize policy through biased sampling from the belief.
We show that the biased sampling naturally induces an updated dynamics belief with policy-dependent reweighting factor, termed Pessimism-Modulated Dynamics Belief.
arXiv Detail & Related papers (2022-10-13T03:14:36Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
We study the offline reinforcement learning (RL) in the face of unmeasured confounders.
We propose various policy learning methods with the finite-sample suboptimality guarantee of finding the optimal in-class policy.
arXiv Detail & Related papers (2022-09-18T22:03:55Z) - Latent-Variable Advantage-Weighted Policy Optimization for Offline RL [70.01851346635637]
offline reinforcement learning methods hold the promise of learning policies from pre-collected datasets without the need to query the environment for new transitions.
In practice, offline datasets are often heterogeneous, i.e., collected in a variety of scenarios.
We propose to leverage latent-variable policies that can represent a broader class of policy distributions.
Our method improves the average performance of the next best-performing offline reinforcement learning methods by 49% on heterogeneous datasets.
arXiv Detail & Related papers (2022-03-16T21:17:03Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.