Realization of a Quantum Error Detection Code with a Dynamically Reassigned Ancillary Qubit
- URL: http://arxiv.org/abs/2506.20529v1
- Date: Wed, 25 Jun 2025 15:16:56 GMT
- Title: Realization of a Quantum Error Detection Code with a Dynamically Reassigned Ancillary Qubit
- Authors: Alena S. Kazmina, Artyom M. Polyanskiy, Elena Yu. Egorova, Nikolay N. Abramov, Daria A. Kalacheva, Viktor B. Lubsanov, Aleksey N. Bolgar, Ilya A. Simakov,
- Abstract summary: superconducting qubits are among the most promising candidates for scalable QEC.<n>limited nearest-neighbor connectivity presents significant challenges for implementing a wide range of error correction codes.<n>We experimentally demonstrate a quantum error detection scheme that employs a dynamically reassigned ancillary qubit on a chain of three linearly connected transmon qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction (QEC) is essential for achieving fault-tolerant quantum computing. While superconducting qubits are among the most promising candidates for scalable QEC, their limited nearest-neighbor connectivity presents significant challenges for implementing a wide range of error correction codes. In this work, we experimentally demonstrate a quantum error detection scheme that employs a dynamically reassigned ancillary qubit on a chain of three linearly connected transmon qubits. We show that this scheme achieves performance comparable to conventional static-ancilla circuits. Additionally, the approach facilitates efficient quantum state preparation, which we demonstrate with tomography of arbitrary logical states. Our results provide a flexible method for implementing QEC codes under connectivity constraints and highlight a promising path toward scalable quantum architectures.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Error correction of a logical qubit encoded in a single atomic ion [0.0]
Quantum error correction (QEC) is essential for quantum computers to perform useful algorithms.<n>Recent work has proposed a complementary approach of performing error correction at the single-particle level.<n>Here we demonstrate QEC in a single atomic ion that decreases errors by a factor of up to 2.2 and extends the qubit's useful lifetime by a factor of up to 1.5.
arXiv Detail & Related papers (2025-03-18T05:10:21Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
The Blind Quantum Computation (BQC) is a delegated protocol, which allows a client to rent a remote quantum server to implement desired quantum computations.
We propose a fault-tolerant blind quantum computation protocol with quantum error-correcting codes to avoid the accumulation and propagation of qubit errors during the computing.
arXiv Detail & Related papers (2023-01-05T08:52:55Z) - Low-overhead quantum error correction codes with a cyclic topology [0.0]
We show an approach to construct the quantum circuit of a correction code with ancillas entangled with non-neighboring data qubits.<n>We introduce a neural network-based decoding algorithm supported by an improved lookup table decoder.
arXiv Detail & Related papers (2022-11-06T12:22:23Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum Computation and Communication in Bosonic Systems [1.52292571922932]
I provide an overview of bosonic quantum error correction schemes and present my contributions to the field.
I demonstrate that fault-tolerant bosonic QEC is possible by concatenating a single-mode bosonic code with a multi-qubit error-correcting code.
I provide explicit bosonic error correction schemes that nearly achieve the fundamental performance limit set by the quantum capacity.
arXiv Detail & Related papers (2021-03-17T05:09:04Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Dynamically Corrected Nonadiabatic Holonomic Quantum Gates [2.436681150766912]
The noise-resilience feature of nonadiabatic holonomic quantum computation (NHQC) still needs to be improved.
We propose a general protocol of universal NHQC with simplified control, which can greatly suppress the effect of accompanied X errors.
Numerical simulation shows that the performance of our gate can be much better than previous protocols.
arXiv Detail & Related papers (2020-12-16T15:52:38Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.