Exploring Graph-Transformer Out-of-Distribution Generalization Abilities
- URL: http://arxiv.org/abs/2506.20575v1
- Date: Wed, 25 Jun 2025 16:09:24 GMT
- Title: Exploring Graph-Transformer Out-of-Distribution Generalization Abilities
- Authors: Itay Niv, Neta Rabin,
- Abstract summary: Graph-transformer (GT) backbones have recently outperformed traditional message-passing neural networks (MPNNs) in multiple in-distribution benchmarks.<n>We show that GT and hybrid GT-MPNN backbones consistently demonstrate stronger generalization ability compared to MPNNs.<n>We also propose a novel post-training analysis approach that compares the clustering structure of the entire ID and OOD test datasets.
- Score: 3.4990427823966828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning on graphs has shown remarkable success across numerous applications, including social networks, bio-physics, traffic networks, and recommendation systems. Regardless of their successes, current methods frequently depend on the assumption that training and testing data share the same distribution, a condition rarely met in real-world scenarios. While graph-transformer (GT) backbones have recently outperformed traditional message-passing neural networks (MPNNs) in multiple in-distribution (ID) benchmarks, their effectiveness under distribution shifts remains largely unexplored. In this work, we address the challenge of out-of-distribution (OOD) generalization for graph neural networks, with a special focus on the impact of backbone architecture. We systematically evaluate GT and hybrid backbones in OOD settings and compare them to MPNNs. To do so, we adapt several leading domain generalization (DG) algorithms to work with GTs and assess their performance on a benchmark designed to test a variety of distribution shifts. Our results reveal that GT and hybrid GT-MPNN backbones consistently demonstrate stronger generalization ability compared to MPNNs, even without specialized DG algorithms. Additionally, we propose a novel post-training analysis approach that compares the clustering structure of the entire ID and OOD test datasets, specifically examining domain alignment and class separation. Demonstrating its model-agnostic design, this approach not only provided meaningful insights into GT and MPNN backbones. It also shows promise for broader applicability to DG problems beyond graph learning, offering a deeper perspective on generalization abilities that goes beyond standard accuracy metrics. Together, our findings highlight the promise of graph-transformers for robust, real-world graph learning and set a new direction for future research in OOD generalization.
Related papers
- Graph Neural Networks Powered by Encoder Embedding for Improved Node Learning [17.31465642587528]
Graph neural networks (GNNs) have emerged as a powerful framework for a wide range of node-level graph learning tasks.<n>In this paper, we leverage a statistically grounded method, one-hot graph encoder embedding (GEE), to generate high-quality initial node features.<n>We demonstrate its effectiveness through extensive simulations and real-world experiments across both unsupervised and supervised settings.
arXiv Detail & Related papers (2025-07-15T21:01:54Z) - G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition [54.45837774534411]
We introduce textbfG-OSR, a benchmark for evaluating Graph Open-Set Recognition (GOSR) methods at both the node and graph levels.<n>Results offer critical insights into the generalizability and limitations of current GOSR methods.
arXiv Detail & Related papers (2025-03-01T13:02:47Z) - Online GNN Evaluation Under Test-time Graph Distribution Shifts [92.4376834462224]
A new research problem, online GNN evaluation, aims to provide valuable insights into the well-trained GNNs's ability to generalize to real-world unlabeled graphs.
We develop an effective learning behavior discrepancy score, dubbed LeBeD, to estimate the test-time generalization errors of well-trained GNN models.
arXiv Detail & Related papers (2024-03-15T01:28:08Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
We introduce a conceptually simple yet principled approach for training robust graph neural networks (GNNs) under node-level distribution shifts.
Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor.
Our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks.
arXiv Detail & Related papers (2024-02-18T07:49:22Z) - Investigating Out-of-Distribution Generalization of GNNs: An
Architecture Perspective [45.352741792795186]
We show that the graph self-attention mechanism and the decoupled architecture contribute positively to graph OOD generalization.
We develop a novel GNN backbone model, DGAT, designed to harness the robust properties of both graph self-attention mechanism and the decoupled architecture.
arXiv Detail & Related papers (2024-02-13T05:38:45Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains.
Recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN.
This paper introduces a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture.
arXiv Detail & Related papers (2024-01-10T08:37:39Z) - Rethinking the Power of Graph Canonization in Graph Representation
Learning with Stability [29.026197379375557]
This paper proposes to maximize the expressivity of GNNs by graph canonization, then the power of such GNNs is studies from the perspective of model stability.
A stable GNN will map similar graphs to close graph representations in the vectorial space, and the stability of GNNs is critical to generalize their performance to unseen graphs.
A comprehensive set of experiments demonstrates the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-09-01T21:23:04Z) - Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons [50.33260238739837]
Graph networks (GNNs) have demonstrated remarkable capabilities in learning from graph-structured data.<n>There remains a lack of analysis comparing GNNs and generalizations from an optimization and generalization perspective.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
We use a random graph generator to investigate how the graph size and structural properties affect the predictive performance of GNNs.
We present specific evidence that the average node degree is a key feature in determining whether GNNs can generalize to unseen graphs.
We propose a multi- module GNN framework that allows the network to adapt flexibly to new graphs by generalizing a single canonical nonlinear transformation over aggregated inputs.
arXiv Detail & Related papers (2022-09-14T12:13:59Z) - Subgroup Generalization and Fairness of Graph Neural Networks [12.88476464580968]
We present a novel PAC-Bayesian analysis for GNNs under a non-IID semi-supervised learning setup.
We further study an accuracy-(dis)parity-style (un)fairness of GNNs from a theoretical perspective.
arXiv Detail & Related papers (2021-06-29T16:13:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.