論文の概要: Learning-Based Distance Estimation for 360° Single-Sensor Setups
- arxiv url: http://arxiv.org/abs/2506.20586v1
- Date: Wed, 25 Jun 2025 16:26:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-26 21:00:42.845547
- Title: Learning-Based Distance Estimation for 360° Single-Sensor Setups
- Title(参考訳): 360°単一センサセットアップにおける学習に基づく距離推定
- Authors: Yitong Quan, Benjamin Kiefer, Martin Messmer, Andreas Zell,
- Abstract要約: 単一360度魚眼レンズカメラを用いた単眼距離推定のためのニューラルネットワークによるアプローチを提案する。
正確なレンズキャリブレーションに依存する古典的な三角法とは異なり、本手法は生の全方位入力から物体の距離を直接学習し、推定する。
- 参考スコア(独自算出の注目度): 11.532574301455854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate distance estimation is a fundamental challenge in robotic perception, particularly in omnidirectional imaging, where traditional geometric methods struggle with lens distortions and environmental variability. In this work, we propose a neural network-based approach for monocular distance estimation using a single 360{\deg} fisheye lens camera. Unlike classical trigonometric techniques that rely on precise lens calibration, our method directly learns and infers the distance of objects from raw omnidirectional inputs, offering greater robustness and adaptability across diverse conditions. We evaluate our approach on three 360{\deg} datasets (LOAF, ULM360, and a newly captured dataset Boat360), each representing distinct environmental and sensor setups. Our experimental results demonstrate that the proposed learning-based model outperforms traditional geometry-based methods and other learning baselines in both accuracy and robustness. These findings highlight the potential of deep learning for real-time omnidirectional distance estimation, making our approach particularly well-suited for low-cost applications in robotics, autonomous navigation, and surveillance.
- Abstract(参考訳): 正確な距離推定は、特に全方位イメージングにおいて、従来の幾何学的手法がレンズ歪みや環境変動に苦しむロボット知覚において、基本的な課題である。
本研究では,単一の360{\deg}魚眼レンズカメラを用いた単眼距離推定のためのニューラルネットワークによるアプローチを提案する。
精密なレンズキャリブレーションに依存する古典的な三角法とは異なり、本手法は生の全方位入力から物体の距離を直接学習し、推定する。
我々は3つの360{\deg}データセット(LOAF, ULM360, 新たにキャプチャしたデータセットBoat360)に対するアプローチを評価し, それぞれ異なる環境とセンサのセットアップを示す。
実験結果から,提案した学習モデルが従来の幾何学的手法と他の学習ベースラインを精度と頑健性の両方で上回ることを示した。
これらの結果は、リアルタイム全方位距離推定のためのディープラーニングの可能性を強調しており、ロボット工学、自律ナビゲーション、監視における低コストな応用に特に適している。
関連論文リスト
- SDGE: Stereo Guided Depth Estimation for 360$^\circ$ Camera Sets [65.64958606221069]
マルチカメラシステムは、360ドル周の知覚を達成するために、しばしば自律走行に使用される。
360ドル(約3万3000円)のカメラセットは、しばしば制限または低品質のオーバーラップ領域を持ち、画像全体に対してマルチビューステレオメソッドを実現する。
重なりの重なりに多視点ステレオ結果を明示的に利用することにより、全画像の深さ推定を強化するステレオガイド深度推定法(SGDE)を提案する。
論文 参考訳(メタデータ) (2024-02-19T02:41:37Z) - Accurate Eye Tracking from Dense 3D Surface Reconstructions using Single-Shot Deflectometry [13.297188931807586]
単発位相計測-デフレクトメトリー(PMD)を用いた視線方向の高精度かつ高速な評価法を提案する。
本手法は,1枚のカメラフレーム(単一ショット)内でのみ,角膜および頭蓋骨の高密度な3次元表面情報を取得する。
実写モデル眼における視線誤差を0.12円以下で実験的に評価し,本手法の有効性を示した。
論文 参考訳(メタデータ) (2023-08-14T17:36:39Z) - Estimating Egocentric 3D Human Pose in Global Space [70.7272154474722]
本稿では,魚眼カメラを用いた自己中心型3次元体姿勢推定法を提案する。
提案手法は, 定量的, 定性的に, 最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-04-27T20:01:57Z) - GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator [51.89441403642665]
剛体物体の6次元ポーズ推定はコンピュータビジョンにおける長年の課題である。
近年、ディープラーニングの出現は、信頼できる6Dポーズを予測するための畳み込みニューラルネットワーク(CNN)の可能性を明らかにしている。
本稿では,完全学習型オブジェクトポーズ推定器を提案する。
論文 参考訳(メタデータ) (2021-02-24T09:11:31Z) - Baseline and Triangulation Geometry in a Standard Plenoptic Camera [6.719751155411075]
レンズカメラに三角測量を適用可能な幾何学的光場モデルを提案する。
提案手法から推定した距離は,カメラの前に設置した実物の距離と一致している。
論文 参考訳(メタデータ) (2020-10-09T15:31:14Z) - Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion [51.19260542887099]
カメラモデルの事前知識を必要とせずに、自己超越を用いて正確な深度とエゴモーション推定を学習できることが示される。
Grossberg と Nayar の幾何学モデルにインスパイアされた我々は、ピクセルワイド射影線を表す畳み込みネットワークである Neural Ray Surfaces (NRS) を導入する。
本研究では,多種多様なカメラシステムを用いて得られた生ビデオから,視覚計測の自己教師付き学習と深度推定にNRSを用いることを実証する。
論文 参考訳(メタデータ) (2020-08-15T02:29:13Z) - 3D Scene Geometry-Aware Constraint for Camera Localization with Deep
Learning [11.599633757222406]
近年、畳み込みニューラルネットワークに基づくエンドツーエンドのアプローチは、従来の3次元幾何学に基づく手法を達成または超えるように研究されている。
本研究では,絶対カメラポーズ回帰のためのコンパクトネットワークを提案する。
これらの従来の手法から着想を得た3Dシーンの幾何学的制約も、動き、深さ、画像の内容を含むすべての利用可能な情報を活用することによって導入される。
論文 参考訳(メタデータ) (2020-05-13T04:15:14Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
多視点光度ステレオ技術を用いて3次元形状と空間的に異なる反射率の両方をキャプチャする手法を提案する。
我々のアルゴリズムは、遠近点光源と遠近点光源に適している。
論文 参考訳(メタデータ) (2020-01-18T12:26:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。