Learning-Based Distance Estimation for 360° Single-Sensor Setups
- URL: http://arxiv.org/abs/2506.20586v1
- Date: Wed, 25 Jun 2025 16:26:55 GMT
- Title: Learning-Based Distance Estimation for 360° Single-Sensor Setups
- Authors: Yitong Quan, Benjamin Kiefer, Martin Messmer, Andreas Zell,
- Abstract summary: We propose a neural network-based approach for monocular distance estimation using a single 360deg fisheye lens camera.<n>Unlike classical trigonometric techniques that rely on precise lens calibration, our method directly learns and infers the distance of objects from raw omnidirectional inputs.
- Score: 11.532574301455854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate distance estimation is a fundamental challenge in robotic perception, particularly in omnidirectional imaging, where traditional geometric methods struggle with lens distortions and environmental variability. In this work, we propose a neural network-based approach for monocular distance estimation using a single 360{\deg} fisheye lens camera. Unlike classical trigonometric techniques that rely on precise lens calibration, our method directly learns and infers the distance of objects from raw omnidirectional inputs, offering greater robustness and adaptability across diverse conditions. We evaluate our approach on three 360{\deg} datasets (LOAF, ULM360, and a newly captured dataset Boat360), each representing distinct environmental and sensor setups. Our experimental results demonstrate that the proposed learning-based model outperforms traditional geometry-based methods and other learning baselines in both accuracy and robustness. These findings highlight the potential of deep learning for real-time omnidirectional distance estimation, making our approach particularly well-suited for low-cost applications in robotics, autonomous navigation, and surveillance.
Related papers
- SDGE: Stereo Guided Depth Estimation for 360$^\circ$ Camera Sets [65.64958606221069]
Multi-camera systems are often used in autonomous driving to achieve a 360$circ$ perception.
These 360$circ$ camera sets often have limited or low-quality overlap regions, making multi-view stereo methods infeasible for the entire image.
We propose the Stereo Guided Depth Estimation (SGDE) method, which enhances depth estimation of the full image by explicitly utilizing multi-view stereo results on the overlap.
arXiv Detail & Related papers (2024-02-19T02:41:37Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field.
We propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector.
arXiv Detail & Related papers (2023-12-13T09:24:42Z) - Accurate Eye Tracking from Dense 3D Surface Reconstructions using Single-Shot Deflectometry [13.297188931807586]
We propose a novel method for accurate and fast evaluation of the gaze direction that exploits teachings from single-shot phase-measuring-deflectometry(PMD)
Our method acquires dense 3D surface information of both cornea and sclera within only one single camera frame (single-shot)
We show the feasibility of our approach with experimentally evaluated gaze errors on a realistic model eye below only $0.12circ$.
arXiv Detail & Related papers (2023-08-14T17:36:39Z) - Robust Self-Supervised Extrinsic Self-Calibration [25.727912226753247]
Multi-camera self-supervised monocular depth estimation from videos is a promising way to reason about the environment.
We introduce a novel method for extrinsic calibration that builds upon the principles of self-supervised monocular depth and ego-motion learning.
arXiv Detail & Related papers (2023-08-04T06:20:20Z) - 360 Depth Estimation in the Wild -- The Depth360 Dataset and the SegFuse
Network [35.03201732370496]
Single-view depth estimation from omnidirectional images has gained popularity with its wide range of applications such as autonomous driving and scene reconstruction.
In this work, we first establish a large-scale dataset with varied settings called Depth360 to tackle the training data problem.
We then propose an end-to-end two-branch multi-task learning network, SegFuse, that mimics the human eye to effectively learn from the dataset.
arXiv Detail & Related papers (2022-02-16T11:56:31Z) - Estimating Egocentric 3D Human Pose in Global Space [70.7272154474722]
We present a new method for egocentric global 3D body pose estimation using a single-mounted fisheye camera.
Our approach outperforms state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-04-27T20:01:57Z) - GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator [51.89441403642665]
6D pose estimation of rigid objects is a long-standing and challenging task in computer vision.<n>Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses.<n>This paper introduces a fully learning-based object pose estimator.
arXiv Detail & Related papers (2021-02-24T09:11:31Z) - Baseline and Triangulation Geometry in a Standard Plenoptic Camera [6.719751155411075]
We present a geometrical light field model allowing triangulation to be applied to a plenoptic camera.
It is shown that distance estimates from our novel method match those of real objects placed in front of the camera.
arXiv Detail & Related papers (2020-10-09T15:31:14Z) - Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion [51.19260542887099]
We show that self-supervision can be used to learn accurate depth and ego-motion estimation without prior knowledge of the camera model.
Inspired by the geometric model of Grossberg and Nayar, we introduce Neural Ray Surfaces (NRS), convolutional networks that represent pixel-wise projection rays.
We demonstrate the use of NRS for self-supervised learning of visual odometry and depth estimation from raw videos obtained using a wide variety of camera systems.
arXiv Detail & Related papers (2020-08-15T02:29:13Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
We propose a camera-based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network.
The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames.
We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field.
arXiv Detail & Related papers (2020-06-07T08:18:31Z) - 3D Scene Geometry-Aware Constraint for Camera Localization with Deep
Learning [11.599633757222406]
Recently end-to-end approaches based on convolutional neural network have been much studied to achieve or even exceed 3D-geometry based traditional methods.
In this work, we propose a compact network for absolute camera pose regression.
Inspired from those traditional methods, a 3D scene geometry-aware constraint is also introduced by exploiting all available information including motion, depth and image contents.
arXiv Detail & Related papers (2020-05-13T04:15:14Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo technique.
Our algorithm is suitable for perspective cameras and nearby point light sources.
arXiv Detail & Related papers (2020-01-18T12:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.