Disentangled representations of microscopy images
- URL: http://arxiv.org/abs/2506.20649v1
- Date: Wed, 25 Jun 2025 17:44:37 GMT
- Title: Disentangled representations of microscopy images
- Authors: Jacopo Dapueto, Vito Paolo Pastore, Nicoletta Noceti, Francesca Odone,
- Abstract summary: This work proposes a Disentangled Representation Learning (DRL) methodology to enhance model interpretability for microscopy image classification.<n>We show how a DRL framework, based on transferring a representation learnt from synthetic data, can provide a good trade-off between accuracy and interpretability in this domain.
- Score: 0.9849635250118911
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Microscopy image analysis is fundamental for different applications, from diagnosis to synthetic engineering and environmental monitoring. Modern acquisition systems have granted the possibility to acquire an escalating amount of images, requiring a consequent development of a large collection of deep learning-based automatic image analysis methods. Although deep neural networks have demonstrated great performance in this field, interpretability, an essential requirement for microscopy image analysis, remains an open challenge. This work proposes a Disentangled Representation Learning (DRL) methodology to enhance model interpretability for microscopy image classification. Exploiting benchmark datasets from three different microscopic image domains (plankton, yeast vacuoles, and human cells), we show how a DRL framework, based on transferring a representation learnt from synthetic data, can provide a good trade-off between accuracy and interpretability in this domain.
Related papers
- Uni-AIMS: AI-Powered Microscopy Image Analysis [24.917584553189187]
We develop a data engine that generates high-quality annotated datasets.<n>We propose a segmentation model capable of robustly detecting both small and large objects.<n>Our solution supports the precise automatic recognition of image scale bars.
arXiv Detail & Related papers (2025-05-11T09:35:53Z) - Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
Multi multiplexed imaging allows for simultaneous visualization of multiple biomarkers in a single section.
Data from multiplexed imaging requires sophisticated computational methods for preprocessing, segmentation, feature extraction, and spatial analysis.
PathML is an AI-powered platform that streamlines image analysis, making complex interpretation accessible for clinical and research settings.
arXiv Detail & Related papers (2024-11-01T18:02:41Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via Generative Adversarial Network in small sample size settings [45.62331048595689]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.<n>We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - LUCYD: A Feature-Driven Richardson-Lucy Deconvolution Network [0.31402652384742363]
This paper proposes LUCYD, a novel method for the restoration of volumetric microscopy images.
Lucyd combines the Richardson-Lucy deconvolution formula and the fusion of deep features obtained by a fully convolutional network.
Our experiments indicate that LUCYD can significantly improve resolution, contrast, and overall quality of microscopy images.
arXiv Detail & Related papers (2023-07-16T10:34:23Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle
Phenotypes [0.5076419064097732]
We present an improved CycleGAN architecture that employs self-supervised discriminators to alleviate the need for numerous images.
We also provide results obtained with small biological datasets on obvious and non-obvious cell phenotype variations.
arXiv Detail & Related papers (2023-01-21T16:25:04Z) - SYNTA: A novel approach for deep learning-based image analysis in muscle
histopathology using photo-realistic synthetic data [2.1616289178832666]
We introduce SYNTA (synthetic data) as a novel approach for the generation of synthetic, photo-realistic, and highly complex biomedical images as training data.
We demonstrate that it is possible to perform robust and expert-level segmentation tasks on previously unseen real-world data, without the need for manual annotations.
arXiv Detail & Related papers (2022-07-29T12:50:32Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
We show that simple convolutional networks trained on localization classification can learn protein representations that encapsulate diverse functional information.
We also propose a robust evaluation strategy to assess quality of protein representations across different scales of biological function.
arXiv Detail & Related papers (2022-05-24T00:00:07Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.