Progressive Size-Adaptive Federated Learning: A Comprehensive Framework for Heterogeneous Multi-Modal Data Systems
- URL: http://arxiv.org/abs/2506.20685v1
- Date: Tue, 24 Jun 2025 18:50:33 GMT
- Title: Progressive Size-Adaptive Federated Learning: A Comprehensive Framework for Heterogeneous Multi-Modal Data Systems
- Authors: Sajid Hussain, Muhammad Sohail, Nauman Ali Khan, Naima Iltaf, Ihtesham ul Islam,
- Abstract summary: This paper introduces Size-Based Adaptive Federated Learning (SAFL)<n>SAFL organizes federated learning based on dataset size characteristics across heterogeneous multi-modal data.<n>It achieves an average accuracy of 87.68% across all datasets, with structured data modalities reaching 99%+ accuracy.
- Score: 1.3348513071843515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as a transformative paradigm for distributed machine learning while preserving data privacy. However, existing approaches predominantly focus on model heterogeneity and aggregation techniques, largely overlooking the fundamental impact of dataset size characteristics on federated training dynamics. This paper introduces Size-Based Adaptive Federated Learning (SAFL), a novel progressive training framework that systematically organizes federated learning based on dataset size characteristics across heterogeneous multi-modal data. Our comprehensive experimental evaluation across 13 diverse datasets spanning 7 modalities (vision, text, time series, audio, sensor, medical vision, and multimodal) reveals critical insights: 1) an optimal dataset size range of 1000-1500 samples for federated learning effectiveness; 2) a clear modality performance hierarchy with structured data (time series, sensor) significantly outperforming unstructured data (text, multimodal); and 3) systematic performance degradation for large datasets exceeding 2000 samples. SAFL achieves an average accuracy of 87.68% across all datasets, with structured data modalities reaching 99%+ accuracy. The framework demonstrates superior communication efficiency, reducing total data transfer to 7.38 GB across 558 communications while maintaining high performance. Our real-time monitoring framework provides unprecedented insights into system resource utilization, network efficiency, and training dynamics. This work fills critical gaps in understanding how data characteristics should drive federated learning strategies, providing both theoretical insights and practical guidance for real-world FL deployments in neural network and learning systems.
Related papers
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.<n>We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - Continual Learning for Multimodal Data Fusion of a Soft Gripper [1.0589208420411014]
A model trained on one data modality often fails when tested with a different modality.
We introduce a continual learning algorithm capable of incrementally learning different data modalities.
We evaluate the algorithm's effectiveness on a challenging custom multimodal dataset.
arXiv Detail & Related papers (2024-09-20T09:53:27Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local.
We propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system.
It is an efficient and effective algorithm that compresses both upstream and downstream communications.
arXiv Detail & Related papers (2021-06-17T12:30:40Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
We show that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts.
Our experiments show that replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices.
arXiv Detail & Related papers (2021-06-10T21:04:18Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Training Data Augmentation for Deep Learning Radio Frequency Systems [1.1199585259018459]
This work focuses on the data used during training.
In general, the examined data types each have useful contributions to a final application.
Despite the benefit of captured data, the difficulties and costs that arise from live collection often make the quantity of data needed to achieve peak performance impractical.
arXiv Detail & Related papers (2020-10-01T02:26:16Z) - Federated Visual Classification with Real-World Data Distribution [9.564468846277366]
We characterize the effect real-world data distributions have on distributed learning, using as a benchmark the standard Federated Averaging (FedAvg) algorithm.
We introduce two new large-scale datasets for species and landmark classification, with realistic per-user data splits.
We also develop two new algorithms (FedVC, FedIR) that intelligently resample and reweight over the client pool, bringing large improvements in accuracy and stability in training.
arXiv Detail & Related papers (2020-03-18T07:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.