OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport
- URL: http://arxiv.org/abs/2506.20741v2
- Date: Fri, 27 Jun 2025 04:41:36 GMT
- Title: OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport
- Authors: Qin Ren, Yifan Wang, Ruogu Fang, Haibin Ling, Chenyu You,
- Abstract summary: Survival prediction using whole slide images (WSIs) can be formulated as a multiple instance learning (MIL) problem.<n>We propose OTSurv, a novel MIL framework from an optimal transport perspective.<n>We set new results across six popular benchmarks, achieving an absolute 3.6% improvement in average C-index.
- Score: 58.5751036808652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival prediction using whole slide images (WSIs) can be formulated as a multiple instance learning (MIL) problem. However, existing MIL methods often fail to explicitly capture pathological heterogeneity within WSIs, both globally -- through long-tailed morphological distributions, and locally through -- tile-level prediction uncertainty. Optimal transport (OT) provides a principled way of modeling such heterogeneity by incorporating marginal distribution constraints. Building on this insight, we propose OTSurv, a novel MIL framework from an optimal transport perspective. Specifically, OTSurv formulates survival predictions as a heterogeneity-aware OT problem with two constraints: (1) global long-tail constraint that models prior morphological distributions to avert both mode collapse and excessive uniformity by regulating transport mass allocation, and (2) local uncertainty-aware constraint that prioritizes high-confidence patches while suppressing noise by progressively raising the total transport mass. We then recast the initial OT problem, augmented by these constraints, into an unbalanced OT formulation that can be solved with an efficient, hardware-friendly matrix scaling algorithm. Empirically, OTSurv sets new state-of-the-art results across six popular benchmarks, achieving an absolute 3.6% improvement in average C-index. In addition, OTSurv achieves statistical significance in log-rank tests and offers high interpretability, making it a powerful tool for survival prediction in digital pathology. Our codes are available at https://github.com/Y-Research-SBU/OTSurv.
Related papers
- A Statistical Learning Perspective on Semi-dual Adversarial Neural Optimal Transport Solvers [65.28989155951132]
In this paper, we establish upper bounds on the generalization error of an approximate OT map recovered by the minimax quadratic OT solver.<n>While our analysis focuses on the quadratic OT, we believe that similar bounds could be derived for general OT case, paving the promising direction for future research.
arXiv Detail & Related papers (2025-02-03T12:37:20Z) - Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport [84.51977664336056]
We propose a novel scalable approach for estimating the robust continuous barycenter.<n>Our method is framed as a min-max optimization problem and is adaptable to general cost functions.
arXiv Detail & Related papers (2024-10-04T23:27:33Z) - Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation [11.195959019678314]
Consistency learning is a central strategy to tackle unlabeled data in semi-supervised medical image segmentation.
In this paper, we propose an Adaptive Bidirectional Displacement approach to solve the above challenge.
arXiv Detail & Related papers (2024-05-01T08:17:43Z) - Double-Bounded Optimal Transport for Advanced Clustering and
Classification [58.237576976486544]
We propose Doubly Bounded Optimal Transport (DB-OT), which assumes that the target distribution is restricted within two boundaries instead of a fixed one.
We show that our method can achieve good results with our improved inference scheme in the testing stage.
arXiv Detail & Related papers (2024-01-21T07:43:01Z) - Multimodal Optimal Transport-based Co-Attention Transformer with Global
Structure Consistency for Survival Prediction [5.445390550440809]
Survival prediction is a complicated ordinal regression task that aims to predict the ranking risk of death.
Due to the large size of pathological images, it is difficult to effectively represent the gigapixel whole slide images (WSIs)
Interactions within tumor microenvironment (TME) in histology are essential for survival analysis.
arXiv Detail & Related papers (2023-06-14T08:01:24Z) - Generative Modeling through the Semi-dual Formulation of Unbalanced
Optimal Transport [9.980822222343921]
We propose a novel generative model based on the semi-dual formulation of Unbalanced Optimal Transport (UOT)
Unlike OT, UOT relaxes the hard constraint on distribution matching. This approach provides better robustness against outliers, stability during training, and faster convergence.
Our model outperforms existing OT-based generative models, achieving FID scores of 2.97 on CIFAR-10 and 6.36 on CelebA-HQ-256.
arXiv Detail & Related papers (2023-05-24T06:31:05Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Semi-Supervised Learning with Variational Bayesian Inference and Maximum
Uncertainty Regularization [62.21716612888669]
We propose two generic methods for improving semi-supervised learning (SSL)
The first integrates weight perturbation (WP) into existing "consistency regularization" (CR) based methods.
The second method proposes a novel consistency loss called "maximum uncertainty regularization" (MUR)
arXiv Detail & Related papers (2020-12-03T09:49:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.