Semi-Supervised Learning with Variational Bayesian Inference and Maximum
Uncertainty Regularization
- URL: http://arxiv.org/abs/2012.01793v2
- Date: Thu, 18 Mar 2021 22:58:26 GMT
- Title: Semi-Supervised Learning with Variational Bayesian Inference and Maximum
Uncertainty Regularization
- Authors: Kien Do, Truyen Tran, Svetha Venkatesh
- Abstract summary: We propose two generic methods for improving semi-supervised learning (SSL)
The first integrates weight perturbation (WP) into existing "consistency regularization" (CR) based methods.
The second method proposes a novel consistency loss called "maximum uncertainty regularization" (MUR)
- Score: 62.21716612888669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose two generic methods for improving semi-supervised learning (SSL).
The first integrates weight perturbation (WP) into existing "consistency
regularization" (CR) based methods. We implement WP by leveraging variational
Bayesian inference (VBI). The second method proposes a novel consistency loss
called "maximum uncertainty regularization" (MUR). While most consistency
losses act on perturbations in the vicinity of each data point, MUR actively
searches for "virtual" points situated beyond this region that cause the most
uncertain class predictions. This allows MUR to impose smoothness on a wider
area in the input-output manifold. Our experiments show clear improvements in
classification errors of various CR based methods when they are combined with
VBI or MUR or both.
Related papers
- Variational Density Propagation Continual Learning [0.0]
Deep Neural Networks (DNNs) deployed to the real world are regularly subject to out-of-distribution (OoD) data.
This paper proposes a framework for adapting to data distribution drift modeled by benchmark Continual Learning datasets.
arXiv Detail & Related papers (2023-08-22T21:51:39Z) - Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep
Learning under Distribution Shift [19.945634052291542]
We evaluate modern BDL algorithms on real-world datasets from the WILDS collection containing challenging classification and regression tasks.
We compare the algorithms on a wide range of large, convolutional and transformer-based neural network architectures.
We provide the first systematic evaluation of BDL for fine-tuning large pre-trained models.
arXiv Detail & Related papers (2023-06-21T14:36:03Z) - Improving Variational Autoencoders with Density Gap-based Regularization [16.770753948524167]
Variational autoencoders (VAEs) are one of the powerful unsupervised learning frameworks in NLP for latent representation learning and latent-directed generation.
In practice, optimizing ELBo often leads the posterior distribution of all samples converge to the same degenerated local optimum, namely posterior collapse or KL vanishing.
We introduce new training objectives to tackle both problems through a novel regularization based on the probabilistic density gap between the aggregated posterior distribution and the prior distribution.
arXiv Detail & Related papers (2022-11-01T08:17:10Z) - Meta-Learning Adversarial Bandits [49.094361442409785]
We study online learning with bandit feedback across multiple tasks, with the goal of improving average performance across tasks if they are similar according to some natural task-similarity measure.
As the first to target the adversarial setting, we design a meta-algorithm that setting-specific guarantees for two important cases: multi-armed bandits (MAB) and bandit optimization (BLO)
Our guarantees rely on proving that unregularized follow-the-leader combined with multiplicative weights is enough to online learn a non-smooth and non-B sequence.
arXiv Detail & Related papers (2022-05-27T17:40:32Z) - On the pitfalls of entropy-based uncertainty for multi-class
semi-supervised segmentation [8.464487190628395]
Semi-supervised learning has emerged as an appealing strategy to train deep models with limited supervision.
We demonstrate in this work that this strategy leads to suboptimal results in a multi-class context.
We propose an alternative solution to compute the uncertainty in a multi-class setting, based on divergence distances and which account for inter-class overlap.
arXiv Detail & Related papers (2022-03-07T18:35:17Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.