Stable Minima of ReLU Neural Networks Suffer from the Curse of Dimensionality: The Neural Shattering Phenomenon
- URL: http://arxiv.org/abs/2506.20779v1
- Date: Wed, 25 Jun 2025 19:10:03 GMT
- Title: Stable Minima of ReLU Neural Networks Suffer from the Curse of Dimensionality: The Neural Shattering Phenomenon
- Authors: Tongtong Liang, Dan Qiao, Yu-Xiang Wang, Rahul Parhi,
- Abstract summary: We study the implicit bias of flatness / low (loss) curvature and its effects on generalization in ReLU networks.<n>We show that while flatness does imply generalization, the resulting rates of convergence necessarily deteriorate exponentially as the input dimension grows.
- Score: 22.29950158991071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the implicit bias of flatness / low (loss) curvature and its effects on generalization in two-layer overparameterized ReLU networks with multivariate inputs -- a problem well motivated by the minima stability and edge-of-stability phenomena in gradient-descent training. Existing work either requires interpolation or focuses only on univariate inputs. This paper presents new and somewhat surprising theoretical results for multivariate inputs. On two natural settings (1) generalization gap for flat solutions, and (2) mean-squared error (MSE) in nonparametric function estimation by stable minima, we prove upper and lower bounds, which establish that while flatness does imply generalization, the resulting rates of convergence necessarily deteriorate exponentially as the input dimension grows. This gives an exponential separation between the flat solutions vis-\`a-vis low-norm solutions (i.e., weight decay), which knowingly do not suffer from the curse of dimensionality. In particular, our minimax lower bound construction, based on a novel packing argument with boundary-localized ReLU neurons, reveals how flat solutions can exploit a kind of ''neural shattering'' where neurons rarely activate, but with high weight magnitudes. This leads to poor performance in high dimensions. We corroborate these theoretical findings with extensive numerical simulations. To the best of our knowledge, our analysis provides the first systematic explanation for why flat minima may fail to generalize in high dimensions.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - FAM: Relative Flatness Aware Minimization [5.132856559837775]
optimizing for flatness has been proposed as early as 1994 by Hochreiter and Schmidthuber.
Recent theoretical work suggests that a particular relative flatness measure can be connected to generalization.
We derive a regularizer based on this relative flatness that is easy to compute, fast, efficient, and works with arbitrary loss functions.
arXiv Detail & Related papers (2023-07-05T14:48:24Z) - The Implicit Bias of Minima Stability in Multivariate Shallow ReLU
Networks [53.95175206863992]
We study the type of solutions to which gradient descent converges when used to train a single hidden-layer multivariate ReLU network with the quadratic loss.
We prove that although shallow ReLU networks are universal approximators, stable shallow networks are not.
arXiv Detail & Related papers (2023-06-30T09:17:39Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
This work takes the first step toward understanding the inductive bias of the minimum trace of the Hessian solutions in deep linear networks.
We show that for all depth greater than one, with the standard Isometry Property (RIP) on the measurements, minimizing the trace of Hessian is approximately equivalent to minimizing the Schatten 1-norm of the corresponding end-to-end matrix parameters.
arXiv Detail & Related papers (2023-06-22T23:14:57Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations [0.0]
We investigate the effects of overfitting on the robustness of gradient-descent training when subject to uncertainty on the gradient estimation.
We show that the general overparametrized formulation introduces a set of spurious equilibria which lay outside the set where the loss function is minimized.
arXiv Detail & Related papers (2023-05-17T02:26:34Z) - Typical and atypical solutions in non-convex neural networks with
discrete and continuous weights [2.7127628066830414]
We study the binary and continuous negative-margin perceptrons as simple non-constrained network models learning random rules and associations.
Both models exhibit subdominant minimizers which are extremely flat and wide.
For both models, the generalization performance as a learning device is shown to be greatly improved by the existence of wide flat minimizers.
arXiv Detail & Related papers (2023-04-26T23:34:40Z) - On the Omnipresence of Spurious Local Minima in Certain Neural Network
Training Problems [0.0]
We study the loss landscape of training problems for deep artificial neural networks with a one-dimensional real output.
It is shown that such problems possess a continuum of spurious (i.e., not globally optimal) local minima for all target functions that are not affine.
arXiv Detail & Related papers (2022-02-23T14:41:54Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Unveiling the structure of wide flat minima in neural networks [0.46664938579243564]
Deep learning has revealed the application potential of networks across the sciences.
The success of deep learning has revealed the application potential of networks across the sciences.
arXiv Detail & Related papers (2021-07-02T16:04:57Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
This paper presents a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifold.
We show that the proposed NN solver can robustly generalize the PDE on new data points with errors that are almost identical to generalizations on new data points.
arXiv Detail & Related papers (2021-06-12T03:55:15Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.