On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations
- URL: http://arxiv.org/abs/2305.09904v1
- Date: Wed, 17 May 2023 02:26:34 GMT
- Title: On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations
- Authors: Arthur Castello B. de Oliveira, Milad Siami and Eduardo D. Sontag
- Abstract summary: We investigate the effects of overfitting on the robustness of gradient-descent training when subject to uncertainty on the gradient estimation.
We show that the general overparametrized formulation introduces a set of spurious equilibria which lay outside the set where the loss function is minimized.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in neural networks and machine learning suggests that using
many more parameters than strictly required by the initial complexity of a
regression problem can result in more accurate or faster-converging models --
contrary to classical statistical belief. This phenomenon, sometimes known as
``benign overfitting'', raises questions regarding in what other ways might
overparameterization affect the properties of a learning problem. In this work,
we investigate the effects of overfitting on the robustness of gradient-descent
training when subject to uncertainty on the gradient estimation. This
uncertainty arises naturally if the gradient is estimated from noisy data or
directly measured. Our object of study is a linear neural network with a
single, arbitrarily wide, hidden layer and an arbitrary number of inputs and
outputs. In this paper we solve the problem for the case where the input and
output of our neural-network are one-dimensional, deriving sufficient
conditions for robustness of our system based on necessary and sufficient
conditions for convergence in the undisturbed case. We then show that the
general overparametrized formulation introduces a set of spurious equilibria
which lay outside the set where the loss function is minimized, and discuss
directions of future work that might extend our current results for more
general formulations.
Related papers
- Topological obstruction to the training of shallow ReLU neural networks [0.0]
We study the interplay between the geometry of the loss landscape and the optimization trajectories of simple neural networks.
This paper reveals the presence of topological obstruction in the loss landscape of shallow ReLU neural networks trained using gradient flow.
arXiv Detail & Related papers (2024-10-18T19:17:48Z) - Minimum-Norm Interpolation Under Covariate Shift [14.863831433459902]
In-distribution research on high-dimensional linear regression has led to the identification of a phenomenon known as textitbenign overfitting
We prove the first non-asymptotic excess risk bounds for benignly-overfit linear interpolators in the transfer learning setting.
arXiv Detail & Related papers (2024-03-31T01:41:57Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
neural network models that perfectly fit noisy data can generalize well to unseen test data.
We consider interpolating two-layer linear neural networks trained with gradient flow on the squared loss and derive bounds on the excess risk.
arXiv Detail & Related papers (2021-08-25T22:01:01Z) - Wide Network Learning with Differential Privacy [7.453881927237143]
Current generation of neural networks suffers significant loss accuracy under most practically relevant privacy training regimes.
We develop a general approach towards training these models that takes advantage of the sparsity of the gradients of private Empirical Minimization (ERM)
Following the same number of parameters, we propose a novel algorithm for privately training neural networks.
arXiv Detail & Related papers (2021-03-01T20:31:50Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well.
An emerging paradigm for describing this unexpected behavior is in terms of a emphdouble descent curve.
We provide a precise high-dimensional analysis of generalization with the Neural Tangent Kernel, which characterizes the behavior of wide neural networks with gradient descent.
arXiv Detail & Related papers (2020-08-15T20:55:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.