Multi-Objective Reinforcement Learning for Cognitive Radar Resource Management
- URL: http://arxiv.org/abs/2506.20853v1
- Date: Wed, 25 Jun 2025 21:56:30 GMT
- Title: Multi-Objective Reinforcement Learning for Cognitive Radar Resource Management
- Authors: Ziyang Lu, Subodh Kalia, M. Cenk Gursoy, Chilukuri K. Mohan, Pramod K. Varshney,
- Abstract summary: We formulate this as a multi-objective optimization problem and employ deep reinforcement learning to find optimal solutions.<n>Our results demonstrate the effectiveness of both algorithms in adapting to various scenarios.<n>This work contributes to the development of more efficient and adaptive cognitive radar systems.
- Score: 13.322245764325125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The time allocation problem in multi-function cognitive radar systems focuses on the trade-off between scanning for newly emerging targets and tracking the previously detected targets. We formulate this as a multi-objective optimization problem and employ deep reinforcement learning to find Pareto-optimal solutions and compare deep deterministic policy gradient (DDPG) and soft actor-critic (SAC) algorithms. Our results demonstrate the effectiveness of both algorithms in adapting to various scenarios, with SAC showing improved stability and sample efficiency compared to DDPG. We further employ the NSGA-II algorithm to estimate an upper bound on the Pareto front of the considered problem. This work contributes to the development of more efficient and adaptive cognitive radar systems capable of balancing multiple competing objectives in dynamic environments.
Related papers
- Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning [44.02103029265148]
We formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs.<n>Our objective is to minimize task completion time and energy consumption while ensuring system stability over time.<n>We propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach.
arXiv Detail & Related papers (2025-04-18T08:44:06Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.<n>We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Current Effect-eliminated Optimal Target Assignment and Motion Planning
for a Multi-UUV System [4.62588687215906]
The paper presents an innovative approach (CBNNTAP) that addresses the complexities and challenges introduced by ocean currents.
It incorporates a bio-inspired neural network-based (BINN) approach which predicts the most efficient paths for individual UUVs.
A critical innovation within the CBNNTAP algorithm is its capacity to address the disruptive effects of ocean currents.
arXiv Detail & Related papers (2024-01-10T19:38:25Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way.
Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs.
We propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation.
arXiv Detail & Related papers (2023-12-08T01:57:10Z) - A Scale-Independent Multi-Objective Reinforcement Learning with
Convergence Analysis [0.6091702876917281]
Many sequential decision-making problems need optimization of different objectives which possibly conflict with each other.
We develop a single-agent scale-independent multi-objective reinforcement learning on the basis of the Advantage Actor-Critic (A2C) algorithm.
A convergence analysis is then done for the devised multi-objective algorithm providing a convergence-in-mean guarantee.
arXiv Detail & Related papers (2023-02-08T16:38:55Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
This paper considers the problem of cost-aware downlink sum-rate via joint optimal radio access technologies (RATs) assignment and power allocation in next-generation wireless networks (HetNets)
We propose a hierarchical multi-agent deep reinforcement learning (DRL) framework, called DeepRAT, to solve it efficiently and learn system dynamics.
In particular, the DeepRAT framework decomposes the problem into two main stages; the RATs-EDs assignment stage, which implements a single-agent Deep Q Network algorithm, and the power allocation stage, which utilizes a multi-agent Deep Deterministic Policy Gradient
arXiv Detail & Related papers (2022-02-28T09:49:44Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously.
The former suffers much from extreme foreground-background imbalance due to the large number of anchors.
This paper proposes a novel framework to replace the classification task in one-stage detectors with a ranking task.
arXiv Detail & Related papers (2020-08-17T13:22:01Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - Obstacle Avoidance and Navigation Utilizing Reinforcement Learning with
Reward Shaping [7.132368785057316]
We propose revised Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization algorithms with an improved reward shaping technique.
We compare the performances between the original DDPG and PPO with the revised version of both on simulations with a real mobile robot and demonstrate that the proposed algorithms achieve better results.
arXiv Detail & Related papers (2020-03-28T18:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.