Empowering Digital Agriculture: A Privacy-Preserving Framework for Data Sharing and Collaborative Research
- URL: http://arxiv.org/abs/2506.20872v1
- Date: Wed, 25 Jun 2025 22:46:30 GMT
- Title: Empowering Digital Agriculture: A Privacy-Preserving Framework for Data Sharing and Collaborative Research
- Authors: Osama Zafar, Rosemarie Santa González, Mina Namazi, Alfonso Morales, Erman Ayday,
- Abstract summary: Data-driven agriculture has the potential to improve crop yield, disease resilience, and long-term soil health.<n>However, privacy concerns, such as adverse pricing, discrimination, and resource manipulation, deter farmers from sharing data.<n>We propose a privacy-preserving framework that enables secure data sharing and collaboration for research and development.
- Score: 1.6000462052866455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven agriculture, which integrates technology and data into agricultural practices, has the potential to improve crop yield, disease resilience, and long-term soil health. However, privacy concerns, such as adverse pricing, discrimination, and resource manipulation, deter farmers from sharing data, as it can be used against them. To address this barrier, we propose a privacy-preserving framework that enables secure data sharing and collaboration for research and development while mitigating privacy risks. The framework combines dimensionality reduction techniques (like Principal Component Analysis (PCA)) and differential privacy by introducing Laplacian noise to protect sensitive information. The proposed framework allows researchers to identify potential collaborators for a target farmer and train personalized machine learning models either on the data of identified collaborators via federated learning or directly on the aggregated privacy-protected data. It also allows farmers to identify potential collaborators based on similarities. We have validated this on real-life datasets, demonstrating robust privacy protection against adversarial attacks and utility performance comparable to a centralized system. We demonstrate how this framework can facilitate collaboration among farmers and help researchers pursue broader research objectives. The adoption of the framework can empower researchers and policymakers to leverage agricultural data responsibly, paving the way for transformative advances in data-driven agriculture. By addressing critical privacy challenges, this work supports secure data integration, fostering innovation and sustainability in agricultural systems.
Related papers
- Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - Privacy-Preserving Dataset Combination [1.9168342959190845]
We present SecureKL, a privacy-preserving framework that enables organizations to identify beneficial data partnerships without exposing sensitive information.<n>In experiments with real-world hospital data, SecureKL successfully identifies beneficial data partnerships that improve model performance.<n>These results demonstrate the potential for privacy-preserving data collaboration to advance machine learning applications in high-stakes domains.
arXiv Detail & Related papers (2025-02-09T03:54:17Z) - Privacy-Preserving Data Linkage Across Private and Public Datasets for Collaborative Agriculture Research [1.6000462052866455]
Digital agriculture raises privacy concerns such as adverse pricing, price discrimination, higher insurance costs, and manipulation of resources.
This study introduces a privacy-preserving framework that addresses these risks while allowing secure data sharing for digital agriculture.
Our framework enables comprehensive data analysis while protecting privacy.
arXiv Detail & Related papers (2024-09-09T21:07:13Z) - Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
This paper presents a privacy-preserving framework for genomic research, developed in collaboration with Lynx.MD.
The framework addresses critical cybersecurity and privacy challenges, enabling the privacy-preserving sharing and analysis of genomic data.
Implementing the framework within Lynx.MD involves encoding genomic data into binary formats and applying noise through controlled perturbation techniques.
arXiv Detail & Related papers (2024-07-12T05:43:13Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Privacy-Preserving Data Sharing in Agriculture: Enforcing Policy Rules
for Secure and Confidential Data Synthesis [0.0]
The use of Big Data in farming requires the collection and analysis of data from various sources such as sensors, satellites, and farmer surveys.
There is significant concern regarding the security of this data as well as the privacy of the participants.
Deep learning-based synthetic data generation has been proposed for privacy-preserving data sharing.
We propose a novel framework for enforcing privacy policy rules in privacy-preserving data generation algorithms.
arXiv Detail & Related papers (2023-11-27T00:12:47Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Assessing Scientific Contributions in Data Sharing Spaces [64.16762375635842]
This paper introduces the SCIENCE-index, a blockchain-based metric measuring a researcher's scientific contributions.
To incentivize researchers to share their data, the SCIENCE-index is augmented to include a data-sharing parameter.
Our model is evaluated by comparing the distribution of its output for geographically diverse researchers to that of the h-index.
arXiv Detail & Related papers (2023-03-18T19:17:47Z) - "You Can't Fix What You Can't Measure": Privately Measuring Demographic
Performance Disparities in Federated Learning [78.70083858195906]
We propose differentially private mechanisms to measure differences in performance across groups while protecting the privacy of group membership.
Our results show that, contrary to what prior work suggested, protecting privacy is not necessarily in conflict with identifying performance disparities of federated models.
arXiv Detail & Related papers (2022-06-24T09:46:43Z) - Crop Knowledge Discovery Based on Agricultural Big Data Integration [2.597676155371155]
Agricultural data can be generated through various sources, such as: Internet of Thing (IoT), sensors, satellites, weather stations, robots, farm equipment, agricultural laboratories, farmers, government agencies and agribusinesses.
We propose an agricultural data integration method using a constellation schema which is designed to be flexible enough to incorporate other datasets and big data models.
arXiv Detail & Related papers (2020-03-11T00:13:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.