Crop Knowledge Discovery Based on Agricultural Big Data Integration
- URL: http://arxiv.org/abs/2003.05043v1
- Date: Wed, 11 Mar 2020 00:13:17 GMT
- Title: Crop Knowledge Discovery Based on Agricultural Big Data Integration
- Authors: Vuong M. Ngo and M-Tahar Kechadi
- Abstract summary: Agricultural data can be generated through various sources, such as: Internet of Thing (IoT), sensors, satellites, weather stations, robots, farm equipment, agricultural laboratories, farmers, government agencies and agribusinesses.
We propose an agricultural data integration method using a constellation schema which is designed to be flexible enough to incorporate other datasets and big data models.
- Score: 2.597676155371155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, the agricultural data can be generated through various sources,
such as: Internet of Thing (IoT), sensors, satellites, weather stations,
robots, farm equipment, agricultural laboratories, farmers, government agencies
and agribusinesses. The analysis of this big data enables farmers, companies
and agronomists to extract high business and scientific knowledge, improving
their operational processes and product quality. However, before analysing this
data, different data sources need to be normalised, homogenised and integrated
into a unified data representation. In this paper, we propose an agricultural
data integration method using a constellation schema which is designed to be
flexible enough to incorporate other datasets and big data models. We also
apply some methods to extract knowledge with the view to improve crop yield;
these include finding suitable quantities of soil properties, herbicides and
insecticides for both increasing crop yield and protecting the environment.
Related papers
- Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Efficient Data Collection for Robotic Manipulation via Compositional Generalization [70.76782930312746]
We show that policies can compose environmental factors from their data to succeed when encountering unseen factor combinations.
We propose better in-domain data collection strategies that exploit composition.
We provide videos at http://iliad.stanford.edu/robot-data-comp/.
arXiv Detail & Related papers (2024-03-08T07:15:38Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
Digital agriculture is rapidly evolving to meet increasing global demand for food, feed, fiber, and fuel.
Machine learning research in digital agriculture has predominantly focused on model-centric approaches.
To fully realize the potential of digital agriculture, it is crucial to have a comprehensive understanding of the role of data in the field.
arXiv Detail & Related papers (2023-12-06T11:38:26Z) - Machine Learning-based Nutrient Application's Timeline Recommendation
for Smart Agriculture: A Large-Scale Data Mining Approach [0.0]
Inaccurate fertiliser application decisions can lead to costly consequences, hinder food production, and cause environmental harm.
We propose a solution to predict nutrient application by determining required fertiliser quantities for an entire season.
The proposed solution recommends adjusting fertiliser amounts based on weather conditions and soil characteristics to promote cost-effective and environmentally friendly agriculture.
arXiv Detail & Related papers (2023-10-18T15:37:19Z) - PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain [29.395926321984565]
We present an annotated dataset and benchmarks for the semantic interpretation of real agricultural fields.
Our dataset recorded with a UAV provides high-quality, pixel-wise annotations of crops and weeds, but also crop leaf instances at the same time.
We provide benchmarks for various tasks on a hidden test set comprised of different fields.
arXiv Detail & Related papers (2023-06-07T16:04:08Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z) - Data Warehouse and Decision Support on Integrated Crop Big Data [0.0]
We designed and implemented a continental level agricultural data warehouse (ADW)
ADW is characterised by its (1) flexible schema; (2) data integration from real agricultural multi datasets; (3) data science and business intelligent support; (4) high performance; (5) high storage; (6) security; (7) governance and monitoring; (8) consistency, availability and partition tolerant; (9) cloud compatibility.
arXiv Detail & Related papers (2020-03-10T00:10:22Z) - Artificial Intelligence for Digital Agriculture at Scale: Techniques,
Policies, and Challenges [1.1245087602142634]
Digital agriculture has the promise to transform agricultural throughput.
It can do this by applying data science and engineering for mapping input factors to crop throughput, while bounding the available resources.
This paper is the first one to bring together the important questions that will guide the end-to-end pipeline for the evolution of a new generation of digital agricultural solutions.
arXiv Detail & Related papers (2020-01-21T06:02:38Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.