Active Learning for Manifold Gaussian Process Regression
- URL: http://arxiv.org/abs/2506.20928v1
- Date: Thu, 26 Jun 2025 01:25:39 GMT
- Title: Active Learning for Manifold Gaussian Process Regression
- Authors: Yuanxing Cheng, Lulu Kang, Yiwei Wang, Chun Liu,
- Abstract summary: This paper introduces an active learning framework for manifold Gaussian Process (GP) regression.<n>It combines manifold learning with strategic data selection to improve accuracy in high-dimensional spaces.
- Score: 5.618322163107168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an active learning framework for manifold Gaussian Process (GP) regression, combining manifold learning with strategic data selection to improve accuracy in high-dimensional spaces. Our method jointly optimizes a neural network for dimensionality reduction and a Gaussian process regressor in the latent space, supervised by an active learning criterion that minimizes global prediction error. Experiments on synthetic data demonstrate superior performance over randomly sequential learning. The framework efficiently handles complex, discontinuous functions while preserving computational tractability, offering practical value for scientific and engineering applications. Future work will focus on scalability and uncertainty-aware manifold learning.
Related papers
- Stochastic Process Learning via Operator Flow Matching [12.275587079383603]
We develop operator flow matching (OFM) for learning process priors on function spaces.<n>OFM provides the probability density of the values of any collection of points.<n>Our method outperforms state-of-the-art models in process learning, functional regression, and prior learning.
arXiv Detail & Related papers (2025-01-07T20:12:56Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
This paper proposes a voice conversion method that works with limited data.
It is based on variational deep kernel learning (SVDKL)
It is possible to estimate non-smooth and more complex functions.
arXiv Detail & Related papers (2023-09-08T16:32:47Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Transfer learning for atomistic simulations using GNNs and kernel mean
embeddings [24.560340485988128]
We propose a transfer learning algorithm that leverages the ability of graph neural networks (GNNs) to represent chemical environments together with kernel mean embeddings.
We test our approach on a series of realistic datasets of increasing complexity, showing excellent generalization and transferability performance.
arXiv Detail & Related papers (2023-06-02T14:58:16Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Active Importance Sampling for Variational Objectives Dominated by Rare
Events: Consequences for Optimization and Generalization [12.617078020344618]
We introduce an approach that combines rare events sampling techniques with neural network optimization to optimize objective functions dominated by rare events.
We show that importance sampling reduces the variance of the solution to a learning problem, suggesting benefits for generalization.
Our numerical experiments demonstrate that we can successfully learn even with the compounding difficulties of high-dimensional and rare data.
arXiv Detail & Related papers (2020-08-11T23:38:09Z) - Deep Learning with Functional Inputs [0.0]
We present a methodology for integrating functional data into feed-forward neural networks.
A by-product of the method is a set of dynamic functional weights that can be visualized during the optimization process.
The model is shown to perform well in a number of contexts including prediction of new data and recovery of the true underlying functional weights.
arXiv Detail & Related papers (2020-06-17T01:23:00Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
We propose two new active learning algorithms for the Gaussian process with uncertainties.
We show that the proposed approach can incorporate the impact from uncertainties, and realize better prediction performance.
This approach has been applied to improving the predictive modeling for automatic shape control of composite fuselage.
arXiv Detail & Related papers (2020-04-23T02:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.