CL-Splats: Continual Learning of Gaussian Splatting with Local Optimization
- URL: http://arxiv.org/abs/2506.21117v1
- Date: Thu, 26 Jun 2025 09:32:37 GMT
- Title: CL-Splats: Continual Learning of Gaussian Splatting with Local Optimization
- Authors: Jan Ackermann, Jonas Kulhanek, Shengqu Cai, Haofei Xu, Marc Pollefeys, Gordon Wetzstein, Leonidas Guibas, Songyou Peng,
- Abstract summary: This paper introduces CL-Splats, which incrementally updates 3D representations from sparse scene captures.<n> CL-Splats integrates a robust change-detection module that segments updated and static components within the scene.<n>Our experiments demonstrate that CL-Splats achieves efficient updates with improved reconstruction quality over the state-of-the-art.
- Score: 68.89159693946685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In dynamic 3D environments, accurately updating scene representations over time is crucial for applications in robotics, mixed reality, and embodied AI. As scenes evolve, efficient methods to incorporate changes are needed to maintain up-to-date, high-quality reconstructions without the computational overhead of re-optimizing the entire scene. This paper introduces CL-Splats, which incrementally updates Gaussian splatting-based 3D representations from sparse scene captures. CL-Splats integrates a robust change-detection module that segments updated and static components within the scene, enabling focused, local optimization that avoids unnecessary re-computation. Moreover, CL-Splats supports storing and recovering previous scene states, facilitating temporal segmentation and new scene-analysis applications. Our extensive experiments demonstrate that CL-Splats achieves efficient updates with improved reconstruction quality over the state-of-the-art. This establishes a robust foundation for future real-time adaptation in 3D scene reconstruction tasks.
Related papers
- QuickSplat: Fast 3D Surface Reconstruction via Learned Gaussian Initialization [69.50126552763157]
Surface reconstruction is fundamental to computer vision and graphics, enabling applications in 3D modeling, mixed reality, robotics, and more.<n>Existing approaches based on rendering obtain promising results, but optimize on a per-scene basis, resulting in a slow optimization that can struggle to model textureless regions.<n>We introduce QuickSplat, which learns data-driven priors to generate dense initializations for 2D gaussian splatting optimization of large-scale indoor scenes.
arXiv Detail & Related papers (2025-05-08T18:43:26Z) - FreeSplat++: Generalizable 3D Gaussian Splatting for Efficient Indoor Scene Reconstruction [50.534213038479926]
FreeSplat++ is an alternative approach to large-scale indoor whole-scene reconstruction.<n>Our method with depth-regularized per-scene fine-tuning demonstrates substantial improvements in reconstruction accuracy and a notable reduction in training time.
arXiv Detail & Related papers (2025-03-29T06:22:08Z) - Gaussian On-the-Fly Splatting: A Progressive Framework for Robust Near Real-Time 3DGS Optimization [8.422116335889163]
This work introduces On-the-Fly GS, a framework enabling near real-time 3DGS optimization during image capture.<n>As each image arrives, its pose and sparse points are updated via on-the-fly SfM, and newly optimized Gaussians are immediately integrated into the 3DGS field.<n>Experiments on multiple benchmark datasets show that our On-the-Fly GS reduces training time significantly, optimizing each new image in seconds with minimal rendering loss.
arXiv Detail & Related papers (2025-03-17T11:47:58Z) - 3D Gaussian Splatting against Moving Objects for High-Fidelity Street Scene Reconstruction [1.2603104712715607]
This paper proposes a novel 3D Gaussian point distribution method for dynamic street scene reconstruction.<n>Our approach eliminates moving objects while preserving high-fidelity static scene details.<n> Experimental results demonstrate that our method achieves high reconstruction quality, improved rendering performance, and adaptability in large-scale dynamic environments.
arXiv Detail & Related papers (2025-03-15T05:41:59Z) - MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval Adjustment for Compact Dynamic 3D Gaussian Splatting [23.98941743726612]
MoDecGS is a memory-efficient framework for reconstructing novel views in challenging scenarios with complex motions.<n>MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos.
arXiv Detail & Related papers (2025-01-07T11:43:13Z) - UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
UrbanGS uses 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene.<n>For potentially dynamic objects, we aggregate temporal information using learnable time embeddings.<n>Our approach outperforms state-of-the-art methods in reconstruction quality and efficiency.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction [24.33543853742041]
3D Gaussian Splatting (3DGS) has emerged as a practical and scalable reconstruction method.
We propose an optimization strategy that effectively regularizes splat features by modeling them as the outputs of a corresponding implicit neural field.
Our approach effectively handles static and dynamic cases, as demonstrated by extensive testing across different setups and scene complexities.
arXiv Detail & Related papers (2024-09-17T14:04:20Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
We introduce InstantSplat, a novel approach for addressing sparse-view 3D scene reconstruction at lightning-fast speed.<n>InstantSplat employs a self-supervised framework that optimize 3D scene representation and camera poses.<n>It achieves an acceleration of over 30x in reconstruction and improves visual quality (SSIM) from 0.3755 to 0.7624 compared to traditional SfM with 3D-GS.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
We propose a framework that performs scene reconstruction and semantic scene completion jointly in an incremental and real-time manner.
Our framework relies on a novel neural architecture designed to process occupancy maps and leverages voxel states to accurately and efficiently fuse semantic completion with the 3D global model.
arXiv Detail & Related papers (2020-10-26T15:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.