Learning to See in the Extremely Dark
- URL: http://arxiv.org/abs/2506.21132v2
- Date: Wed, 30 Jul 2025 08:38:57 GMT
- Title: Learning to See in the Extremely Dark
- Authors: Hai Jiang, Binhao Guan, Zhen Liu, Xiaohong Liu, Jian Yu, Zheng Liu, Songchen Han, Shuaicheng Liu,
- Abstract summary: We propose a paired-to-paired data synthesis pipeline capable of generating well-calibrated extremely low-light RAW images.<n>A large-scale paired dataset named See-in-the-Extremely-Dark (SIED) is used to benchmark low-light RAW image enhancement approaches.<n>A diffusion-based framework is proposed to restore visually pleasing results from extremely low-SNR RAW inputs.
- Score: 41.386150786725295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based methods have made promising advances in low-light RAW image enhancement, while their capability to extremely dark scenes where the environmental illuminance drops as low as 0.0001 lux remains to be explored due to the lack of corresponding datasets. To this end, we propose a paired-to-paired data synthesis pipeline capable of generating well-calibrated extremely low-light RAW images at three precise illuminance ranges of 0.01-0.1 lux, 0.001-0.01 lux, and 0.0001-0.001 lux, together with high-quality sRGB references to comprise a large-scale paired dataset named See-in-the-Extremely-Dark (SIED) to benchmark low-light RAW image enhancement approaches. Furthermore, we propose a diffusion-based framework that leverages the generative ability and intrinsic denoising property of diffusion models to restore visually pleasing results from extremely low-SNR RAW inputs, in which an Adaptive Illumination Correction Module (AICM) and a color consistency loss are introduced to ensure accurate exposure correction and color restoration. Extensive experiments on the proposed SIED and publicly available benchmarks demonstrate the effectiveness of our method. The code and dataset are available at https://github.com/JianghaiSCU/SIED.
Related papers
- Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.<n>We propose a novel Mamba-based method customized for low light RAW images, called RAWMamba, to effectively handle raw images with different CFAs.<n>By bridging demosaicing and denoising, better enhancement for low light RAW images is achieved.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - Zero-Shot Enhancement of Low-Light Image Based on Retinex Decomposition [4.175396687130961]
We propose a new learning-based Retinex decomposition of zero-shot low-light enhancement method, called ZERRINNet.
Our method is a zero-reference enhancement method that is not affected by the training data of paired and unpaired datasets.
arXiv Detail & Related papers (2023-11-06T09:57:48Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
Previous arts mainly focus on the low-light images captured in the visible spectrum using pixel-wise loss.
We propose a novel approach to increase the visibility of images captured under low-light environments by removing the in-camera infrared (IR) cut-off filter.
arXiv Detail & Related papers (2023-07-09T08:29:19Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Instance Segmentation in the Dark [43.85818645776587]
We take a deep look at instance segmentation in the dark and introduce several techniques that substantially boost the low-light inference accuracy.
We propose a novel learning method that relies on an adaptive weighted downsampling layer, a smooth-oriented convolutional block, and disturbance suppression learning.
We capture a real-world low-light instance segmentation dataset comprising over two thousand paired low/normal-light images with instance-level pixel-wise annotations.
arXiv Detail & Related papers (2023-04-27T16:02:29Z) - KinD-LCE Curve Estimation And Retinex Fusion On Low-Light Image [7.280719886684936]
This paper proposes an algorithm for low illumination enhancement.
KinD-LCE uses a light curve estimation module to enhance the illumination map in the Retinex decomposed image.
An illumination map and reflection map fusion module were also proposed to restore the image details and reduce detail loss.
arXiv Detail & Related papers (2022-07-19T11:49:21Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z) - Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement [156.18634427704583]
The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network.
Our method trains a lightweight deep network, DCE-Net, to estimate pixel-wise and high-order curves for dynamic range adjustment of a given image.
arXiv Detail & Related papers (2020-01-19T13:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.