論文の概要: Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
- arxiv url: http://arxiv.org/abs/2506.21142v1
- Date: Thu, 26 Jun 2025 10:56:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:10.054151
- Title: Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
- Title(参考訳): UAVサイバーアタック生成とアウト・オブ・ディストリビューション検出
- Authors: Deepak Kumar Panda, Weisi Guo,
- Abstract要約: 本稿では,IDS機構を回避したステルス性対向攻撃を実現するための条件生成対向ネットワーク(cGAN)ベースのフレームワークを提案する。
本研究は,IDS能力を高めるための高度な確率的モデリングの重要性を強調した。
- 参考スコア(独自算出の注目度): 6.956559003734227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
- Abstract(参考訳): UAVの民間空域への統合は、従来の異常検出手法がしばしば新しい脅威を特定するのに失敗するため、レジリエントでインテリジェントな侵入検知システム(IDS)の必要性を浮き彫りにしている。
一般的なアプローチでは、不慣れな攻撃をアウト・オブ・ディストリビューション(OOD)のサンプルとして扱うが、緩和が不十分な場合、システムは脆弱になる。
さらに、従来のOOD検出器は、本物のOODイベントとステルス的な敵攻撃を区別するのに苦労している。
本稿では,IDS機構を回避したステルス性対向攻撃を実現するための条件生成対向ネットワーク(cGAN)ベースのフレームワークを提案する。
我々はまず、DoS(DoS)、FDI(False Data Injection)、MITM(Man-in-the-middle)、リプレイアタックを含む、良質なUAVテレメトリおよび既知のサイバーアタックに基づいて訓練された堅牢な多クラスIDS分類器を設計する。
この分類器を用いて、我々のcGANの摂動は、OOD分布と統計的類似性を保ちつつ、良性を誤分類する敵のサンプルを生成するために、既知の攻撃を発生させる。
これらの敵対的なサンプルは、高いステルスと成功率を達成するために反復的に精製される。
このような摂動を検出するために,正のOODサンプルから対向入力を分離するために負の対数類似性を利用する条件付き変分オートエンコーダ(CVAE)を実装した。
比較評価の結果、CVAEベースの後悔スコアは従来のマハラノビス距離に基づく検出器よりもかなり優れており、ステルスな敵の脅威を識別している。
本研究は,IDS能力を高めるための高度な確率的モデリングの重要性を強調した。
関連論文リスト
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
IoT(Internet of Things)は、重大なセキュリティ上の課題に直面している。
敵の攻撃による脅威の増大は、信頼できる防衛戦略の必要性を回復させる。
本研究は、敵のサイバー攻撃事例が現実的であるために必要な制約の種類について述べる。
論文 参考訳(メタデータ) (2023-01-30T18:00:28Z) - Generative Adversarial Network-Driven Detection of Adversarial Tasks in
Mobile Crowdsensing [5.675436513661266]
クラウドセンシングシステムは、不特定かつユビキタスなプロパティの上に構築されるため、さまざまな攻撃に対して脆弱である。
以前の研究では、GANベースの攻撃は実験的に設計された攻撃サンプルよりも重大な破壊力を示すことが示唆されている。
本稿では,GANモデルを統合することにより,知的に設計された不正なセンシングサービス要求を検出することを目的とする。
論文 参考訳(メタデータ) (2022-02-16T00:23:25Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Deep Neural Networks (DNN) を中継するセキュリティに敏感なアプリケーションは、Adversarial Examples (AE) を生成するために作られた小さな摂動に弱い。
本稿では,マルチタスク学習環境における選択的予測,モデルレイヤの出力処理,知識伝達概念を用いた教師なし検出機構を提案する。
実験の結果,提案手法は,ホワイトボックスシナリオにおけるテスト攻撃に対する最先端手法と同等の結果を得られ,ブラックボックスとグレーボックスシナリオの精度が向上した。
論文 参考訳(メタデータ) (2021-03-09T11:06:15Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
本研究では,自己指導型高水準表現の堅牢性について,敵攻撃に対する防御に利用して検討する。
ASVspoof 2019データセットの実験結果は、Mockingjayによって抽出されたハイレベルな表現が、敵の例の転送可能性を妨げることを示した。
論文 参考訳(メタデータ) (2020-06-05T03:03:06Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。