Transformer-Based Spatial-Temporal Counterfactual Outcomes Estimation
- URL: http://arxiv.org/abs/2506.21154v1
- Date: Thu, 26 Jun 2025 11:24:46 GMT
- Title: Transformer-Based Spatial-Temporal Counterfactual Outcomes Estimation
- Authors: He Li, Haoang Chi, Mingyu Liu, Wanrong Huang, Liyang Xu, Wenjing Yang,
- Abstract summary: This paper proposes a novel framework for estimating counterfactual outcomes with spatial-temporal attributes using the Transformer.<n>To validate the effectiveness of our approach, we conduct simulation experiments and real data experiments.<n>Real data experiments provide a valuable conclusion to the causal effect of conflicts on forest loss in Colombia.
- Score: 17.685973892898502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The real world naturally has dimensions of time and space. Therefore, estimating the counterfactual outcomes with spatial-temporal attributes is a crucial problem. However, previous methods are based on classical statistical models, which still have limitations in performance and generalization. This paper proposes a novel framework for estimating counterfactual outcomes with spatial-temporal attributes using the Transformer, exhibiting stronger estimation ability. Under mild assumptions, the proposed estimator within this framework is consistent and asymptotically normal. To validate the effectiveness of our approach, we conduct simulation experiments and real data experiments. Simulation experiments show that our estimator has a stronger estimation capability than baseline methods. Real data experiments provide a valuable conclusion to the causal effect of conflicts on forest loss in Colombia. The source code is available at https://github.com/lihe-maxsize/DeppSTCI_Release_Version-master.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Causal Lifting of Neural Representations: Zero-Shot Generalization for Causal Inferences [56.23412698865433]
We focus on Prediction-Powered Causal Inferences (PPCI)<n> PPCI estimates the treatment effect in a target experiment with unlabeled factual outcomes, retrievable zero-shot from a pre-trained model.<n>We validate our method on synthetic and real-world scientific data, offering solutions to instances not solvable by vanilla Empirical Risk Minimization.
arXiv Detail & Related papers (2025-02-10T10:52:17Z) - Efficient Randomized Experiments Using Foundation Models [10.606998433337894]
In this paper, we propose a novel approach that integrates the predictions from multiple foundation models while preserving valid statistical inference.<n>Our estimator offers substantial precision gains, equivalent to a reduction of up to 20% in the sample size needed to match the same precision as the standard estimator based on experimental data alone.
arXiv Detail & Related papers (2025-02-06T17:54:10Z) - Non-parametric efficient estimation of marginal structural models with multi-valued time-varying treatments [0.9558392439655012]
We use machine learning together with recent developments in semi-parametric efficiency theory for longitudinal studies to propose such an estimator.
We show conditions under which the proposed estimator is efficient as anally normal, and sequentially doubly robust in the sense that it is consistent if, for each time point, either the outcome or the treatment mechanism is consistently estimated.
arXiv Detail & Related papers (2024-09-27T14:29:12Z) - Benchmarking Estimators for Natural Experiments: A Novel Dataset and a Doubly Robust Algorithm [12.201705893125775]
We introduce a novel natural experiment dataset obtained from an early childhood literacy nonprofit.
Applying over 20 established estimators to the dataset produces inconsistent results in evaluating the nonprofit's efficacy.
We create a benchmark to evaluate estimator accuracy using synthetic outcomes.
arXiv Detail & Related papers (2024-09-06T15:44:45Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
We propose Conformalized Amortized Neural Variational Inference (CANVI)
CANVI constructs conformalized predictors based on each candidate, compares the predictors using a metric known as predictive efficiency, and returns the most efficient predictor.
We prove lower bounds on the predictive efficiency of the regions produced by CANVI and explore how the quality of a posterior approximation relates to the predictive efficiency of prediction regions based on that approximation.
arXiv Detail & Related papers (2023-05-23T17:24:04Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Truncated Marginal Neural Ratio Estimation [5.438798591410838]
We present a neural simulator-based inference algorithm which simultaneously offers simulation efficiency and fast empirical posterior testability.
Our approach is simulation efficient by simultaneously estimating low-dimensional marginal posteriors instead of the joint posterior.
By estimating a locally amortized posterior our algorithm enables efficient empirical tests of the robustness of the inference results.
arXiv Detail & Related papers (2021-07-02T18:00:03Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
We propose a new training scheme for auto-regressive sequence generative models, which is effective and stable when operating at large sample space encountered in text generation.
Our method stably outperforms Maximum Likelihood Estimation and other state-of-the-art sequence generative models in terms of both quality and diversity.
arXiv Detail & Related papers (2020-07-12T15:31:24Z) - Showing Your Work Doesn't Always Work [73.63200097493576]
"Show Your Work: Improved Reporting of Experimental Results" advocates for reporting the expected validation effectiveness of the best-tuned model.
We analytically show that their estimator is biased and uses error-prone assumptions.
We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation.
arXiv Detail & Related papers (2020-04-28T17:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.