GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models
- URL: http://arxiv.org/abs/2506.21245v1
- Date: Thu, 26 Jun 2025 13:28:09 GMT
- Title: GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models
- Authors: Qifei Cui, Xinyu Lu,
- Abstract summary: This work introduces a novel framework for brain tumor segmentation leveraging pre-trained GANs and Unet architectures.<n>By combining a global anomaly detection module with a refined mask generation network, the proposed model accurately identifies tumor-sensitive regions.<n>Multi-modal MRI data and synthetic image augmentation are employed to improve robustness and address the challenge of limited annotated datasets.
- Score: 1.0456203870202954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces a novel framework for brain tumor segmentation leveraging pre-trained GANs and Unet architectures. By combining a global anomaly detection module with a refined mask generation network, the proposed model accurately identifies tumor-sensitive regions and iteratively enhances segmentation precision using adversarial loss constraints. Multi-modal MRI data and synthetic image augmentation are employed to improve robustness and address the challenge of limited annotated datasets. Experimental results on the BraTS dataset demonstrate the effectiveness of the approach, achieving high sensitivity and accuracy in both lesion-wise Dice and HD95 metrics than the baseline. This scalable method minimizes the dependency on fully annotated data, paving the way for practical real-world applications in clinical settings.
Related papers
- Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor Segmentation (GMLN-BTS) in Edge Iterative MRI Lesion Localization System (EdgeIMLocSys) [6.451534509235736]
We propose the Edge Iterative MRI Lesion Localization System (EdgeIMLocSys), which integrates Continuous Learning from Human Feedback.<n>Central to this system is the Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor (GMLN-BTS)<n>Our proposed GMLN-BTS model achieves a Dice score of 85.1% on the BraTS 2017 dataset with only 4.58 million parameters, representing a 98% reduction compared to mainstream 3D Transformer models.
arXiv Detail & Related papers (2025-07-14T07:29:49Z) - Robust Brain Tumor Segmentation with Incomplete MRI Modalities Using Hölder Divergence and Mutual Information-Enhanced Knowledge Transfer [10.66488607852885]
We propose a robust single-modality parallel processing framework that achieves high segmentation accuracy even with incomplete modalities.<n>Our model maintains modality-specific features while dynamically adjusting network parameters based on the available inputs.<n>By using these divergence- and information-based loss functions, the framework effectively quantifies discrepancies between predictions and ground-truth labels.
arXiv Detail & Related papers (2025-07-02T00:18:07Z) - Multi-encoder nnU-Net outperforms Transformer models with self-supervised pretraining [0.0]
This study addresses the essential task of medical image segmentation, which involves the automatic identification and delineation of anatomical structures and pathological regions in medical images.<n>We propose a novel self-supervised learning Multi-encoder nnU-Net architecture designed to process multiple MRI modalities independently through separate encoders.<n>Our Multi-encoder nnU-Net demonstrates exceptional performance, achieving a Dice Similarity Coefficient (DSC) of 93.72%, which surpasses that of other models such as vanilla nnU-Net, SegResNet, and Swin UNETR.
arXiv Detail & Related papers (2025-04-04T14:31:06Z) - MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
We propose MAST-Pro, a novel framework that integrates dynamic Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmentation.<n>Specifically, text and anatomical prompts provide domain-specific priors guiding tumor representation learning, while D-MoE dynamically selects experts to balance generic and tumor-specific feature learning.<n>Experiments on multi-anatomical tumor datasets demonstrate that MAST-Pro outperforms state-of-the-art approaches, achieving up to a 5.20% improvement in average improvement while reducing trainable parameters by 91.04%, without compromising accuracy.
arXiv Detail & Related papers (2025-03-18T15:39:44Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - Neuro-TransUNet: Segmentation of stroke lesion in MRI using transformers [0.6554326244334866]
This study introduces the Neuro-TransUNet framework, which synergizes the U-Net's spatial feature extraction with SwinUNETR's global contextual processing ability.
The proposed Neuro-TransUNet model, trained with the ATLAS v2.0 emphtraining dataset, outperforms existing deep learning algorithms and establishes a new benchmark in stroke lesion segmentation.
arXiv Detail & Related papers (2024-06-10T04:36:21Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.