CoPa-SG: Dense Scene Graphs with Parametric and Proto-Relations
- URL: http://arxiv.org/abs/2506.21357v1
- Date: Thu, 26 Jun 2025 15:09:23 GMT
- Title: CoPa-SG: Dense Scene Graphs with Parametric and Proto-Relations
- Authors: Julian Lorenz, Mrunmai Phatak, Robin Schön, Katja Ludwig, Nico Hörmann, Annemarie Friedrich, Rainer Lienhart,
- Abstract summary: We present CoPa-SG, a synthetic scene graph dataset with highly precise ground truth and exhaustive relation annotations between all objects.<n>We also introduce parametric and proto-relations, two new fundamental concepts for scene graphs.<n>We demonstrate how our new relation types can be integrated in downstream applications to enhance planning and reasoning capabilities.
- Score: 11.603320972814778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 2D scene graphs provide a structural and explainable framework for scene understanding. However, current work still struggles with the lack of accurate scene graph data. To overcome this data bottleneck, we present CoPa-SG, a synthetic scene graph dataset with highly precise ground truth and exhaustive relation annotations between all objects. Moreover, we introduce parametric and proto-relations, two new fundamental concepts for scene graphs. The former provides a much more fine-grained representation than its traditional counterpart by enriching relations with additional parameters such as angles or distances. The latter encodes hypothetical relations in a scene graph and describes how relations would form if new objects are placed in the scene. Using CoPa-SG, we compare the performance of various scene graph generation models. We demonstrate how our new relation types can be integrated in downstream applications to enhance planning and reasoning capabilities.
Related papers
- FDSG: Forecasting Dynamic Scene Graphs [41.18167591493808]
We propose a novel framework that predicts future entity labels, bounding boxes, and relationships for unobserved frames.<n>A temporal aggregation module further refines predictions by integrating forecasted and observed information via crossattention.<n>Experiments on Action Genome show that FDSG outperforms state-of-the-art methods on dynamic scene graph generation, scene graph anticipation, and scene graph forecasting.
arXiv Detail & Related papers (2025-06-02T09:46:22Z) - Joint Generative Modeling of Scene Graphs and Images via Diffusion
Models [37.788957749123725]
We present a novel generative task: joint scene graph - image generation.
We introduce a novel diffusion model, DiffuseSG, that jointly models the adjacency matrix along with heterogeneous node and edge attributes.
With a graph transformer being the denoiser, DiffuseSG successively denoises the scene graph representation in a continuous space and discretizes the final representation to generate the clean scene graph.
arXiv Detail & Related papers (2024-01-02T10:10:29Z) - CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graph
Diffusion [83.30168660888913]
We present CommonScenes, a fully generative model that converts scene graphs into corresponding controllable 3D scenes.
Our pipeline consists of two branches, one predicting the overall scene layout via a variational auto-encoder and the other generating compatible shapes.
The generated scenes can be manipulated by editing the input scene graph and sampling the noise in the diffusion model.
arXiv Detail & Related papers (2023-05-25T17:39:13Z) - SPAN: Learning Similarity between Scene Graphs and Images with Transformers [29.582313604112336]
We propose a Scene graPh-imAge coNtrastive learning framework, SPAN, that can measure the similarity between scene graphs and images.
We introduce a novel graph serialization technique that transforms a scene graph into a sequence with structural encodings.
arXiv Detail & Related papers (2023-04-02T18:13:36Z) - Location-Free Scene Graph Generation [45.366540803729386]
Scene Graph Generation (SGG) is a visual understanding task, aiming to describe a scene as a graph of entities and their relationships with each other.<n>Existing works rely on location labels in form of bounding boxes or segmentation masks, increasing annotation costs and limiting dataset expansion.<n>We break this dependency and introduce location-free scene graph generation (LF-SGG)<n>This new task aims at predicting instances of entities, as well as their relationships, without the explicit calculation of their spatial localization.
arXiv Detail & Related papers (2023-03-20T08:57:45Z) - Scene Graph Modification as Incremental Structure Expanding [61.84291817776118]
We focus on scene graph modification (SGM), where the system is required to learn how to update an existing scene graph based on a natural language query.
We frame SGM as a graph expansion task by introducing the incremental structure expanding (ISE)
We construct a challenging dataset that contains more complicated queries and larger scene graphs than existing datasets.
arXiv Detail & Related papers (2022-09-15T16:26:14Z) - Iterative Scene Graph Generation [55.893695946885174]
Scene graph generation involves identifying object entities and their corresponding interaction predicates in a given image (or video)
Existing approaches to scene graph generation assume certain factorization of the joint distribution to make the estimation iteration feasible.
We propose a novel framework that addresses this limitation, as well as introduces dynamic conditioning on the image.
arXiv Detail & Related papers (2022-07-27T10:37:29Z) - Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes Using
Scene Graphs [85.54212143154986]
Controllable scene synthesis consists of generating 3D information that satisfy underlying specifications.
Scene graphs are representations of a scene composed of objects (nodes) and inter-object relationships (edges)
We propose the first work that directly generates shapes from a scene graph in an end-to-end manner.
arXiv Detail & Related papers (2021-08-19T17:59:07Z) - Unconditional Scene Graph Generation [72.53624470737712]
We develop a deep auto-regressive model called SceneGraphGen which can learn the probability distribution over labelled and directed graphs.
We show that the scene graphs generated by SceneGraphGen are diverse and follow the semantic patterns of real-world scenes.
arXiv Detail & Related papers (2021-08-12T17:57:16Z) - Bridging Knowledge Graphs to Generate Scene Graphs [49.69377653925448]
We propose a novel graph-based neural network that iteratively propagates information between the two graphs, as well as within each of them.
Our Graph Bridging Network, GB-Net, successively infers edges and nodes, allowing to simultaneously exploit and refine the rich, heterogeneous structure of the interconnected scene and commonsense graphs.
arXiv Detail & Related papers (2020-01-07T23:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.